
Johannes Manner
Stephan Haarmann
Stefan Kolb
Nico Herzberg
Oliver Kopp

ZEUS 2021

13th ZEUS Workshop, ZEUS 2021,
Bamberg, Germany, 25–26 February 2021
Proceedings

Volume Editors

Johannes Manner
University of Bamberg, Distributed Systems Group
An der Weberei 5, DE-96049 Bamberg
johannes.manner@uni-bamberg.de

Stephan Haarmann
Hasso Plattner Institute, Business Process Technology
Prof.-Dr.-Helmert-Str. 2-3, DE-14482 Potsdam
stephan.haarmann@hpi.de

Stefan Kolb
JabRef Research
stefan.kolb@jabref.org

Nico Herzberg
Campeleon

Oliver Kopp
JabRef Research
oliver.kopp@jabref.org

Copyright ©2021 for the individual papers by the papers’ authors.
Copyright ©2021 for the volume as a collection by its editors.
This volume and its papers are published under the Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Preface

In February 2021, we had the pleasure to organize the 13th edition of the ZEUS
Workshop planned in Bamberg, Germany. Due to the ongoing covid-19 pandemic,
the workshop is held virtually, giving us the chance to also invite our PC members
which are one of ZEUS’ success factors. Thanks a lot for your reviewing work
and the ongoing support.

This workshop series offers young researchers an opportunity to present and
discuss early ideas and work in progress as well as to establish contacts among
young researchers. For this year’s edition, we selected thirteen submissions for
presentation at the workshop. Each submission went through a thorough peer-
review process and was assessed by at least five members of the program committee
with regard to its relevance and scientific quality. The accepted contributions cover
the areas of Business Process Management, Cloud Computing, Microservices,
Software Design, and the Internet of Things.

The workshop will be generously sponsored by Camunda Services GmbH.

Bamberg, February 2021 Johannes Manner
Stephan Haarmann

Stefan Kolb
Nico Herzberg
Oliver Kopp

Organization

Steering Committee

Nico Herzberg Campeleon
Oliver Kopp JabRef Research
Stefan Kolb JabRef Research
Stephan Haarmann Hasso Plattner Institute, University of Potsdam
Johannes Manner University of Bamberg

Local Organizer

Robin Lichtenthäler University of Bamberg
Sebastian Böhm University of Bamberg

Program Committee Chairs

Stephan Haarmann Hasso Plattner Institute, University of Potsdam
Johannes Manner University of Bamberg

Program Committee

Saimir Bala Vienna University of Economics and Business
Achim D. Bruckner University of Exeter
Sebastian Böhm University of Bamberg
Dirk Fahland Eindhoven University of Technology
Manuel Fritz University of Stuttgart
Matthias Geiger University of Bamberg
Georg Grossmann University of South Australia
Lukas Harzenetter University of Stuttgart
Thomas Heinze German Aerospace Center
Pascal Hirmer University of Stuttgart
Christoph Hochreiner Compass Verlag
Meiko Jensen Kiel University of Applied Sciences
Jan Ladleif Hasso Plattner Institute, University of Potsdam
Jörg Lenhard SAP SE
Robin Lichtenthäler University of Bamberg
Daniel Lübke Digital Solution Architecture
Matteo Nardelli University of Rome Tor Vergata
Adriatik Nikaj Hasso Plattner Institute, University of Potsdam
Stefan Schulte Vienna University of Technology
Jan Sürmeli FZI Forschungszentrum Informatik, Karlsruhe
Stefan Winzinger University of Bamberg
Michael Wurster University of Stuttgart
Han van der Aa Humboldt University of Berlin

Sponsoring Institutions

Camunda Services GmbH

Table of Contents

Fragment-Based Case Management Models: Metamodel, Consistency, &
Correctness . 1

Stephan Haarmann

Towards Decision Management for Robotic Process Automation 9
Simon Siegert and Maximilian Völker

Towards Real-Time Progress Determination of Object-Aware Business
Processes . 14

Lisa Arnold, Marius Breitmayer and Manfred Reichert

Towards a Framework for Data Enhanced Process Models in Process Mining 19
Jonas Cremerius

Detecting Semantic Business Process Model Clones . 25
Thomas Heinze, Wolfram Amme and André Schäfer

A Dashboard-based Approach for Monitoring Object-Aware Processes . . . 29
Marius Breitmayer, Lisa Arnold and Manfred Reichert

Custom-MADE – Leveraging Agile Rationale Management by Employing
Domain-Specific Languages . 34

Mathias Schubanz

ElogQP: An Event log Quality Pointer . 43
Tobias Ziolkowski, Lennart Brandt and Agnes Koschmider

Analysis of Prevalent BPMN Layout Choices on GitHub 47
Daniel Lübke and Daniel Wutke

A Deep Q-learning Scaling Policy for Elastic Application Deployment . . . 56
Fabiana Rossi

Profiling Lightweight Container Platforms: MicroK8s and K3s in
Comparison to Kubernetes . 65

Sebastian Böhm and Guido Wirtz

An Evaluation of Saga Pattern Implementation Technologies 74
Karolin Dürr, Robin Lichtenthäler and Guido Wirtz

Systematic Literature Tools: Are we there yet? . 83
Dominik Voigt, Oliver Kopp and Karoline Wild

Fragment-Based Case Management Models:
Metamodel, Consistency, and Correctness

Stephan Haarmann

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
stephan.haarmann@hpi.de

Abstract. Knowledge-intensive processes are inherently complex. Thus, model-
ing them is hard as the models have to capture various perspectives often using
sub-models with hidden dependencies, e.g., the behavior of a process is constrained
by cardinality constraints in a domain model. Yet, models are desirable as they are
the primary tool in business process management to analyze, design, implement,
and enact processes. We present a metamodel, consistency and correctness criteria
for fragment-based case management. The criteria can i) be verified automatically
and ii) used to assist modelers at design-time. Thereby, mistakes can be detected
and even prevented during design, so model quality improves.

Keywords: Business Process Management, Process Modeling, Case Management

1 Introduction

Managing knowledge-intensive business processes is hard, and traditional business
process management (BPM) is insufficient for this task [16]. While traditional business
processes are highly structured, well-defined, and repetitive, knowledge-intensive ones
are emergent, multi-variant, data-driven, and non-repeatable [3]. While highly structured
processes are often modeled using imperative modeling languages, purely imperative
models of knowledge-intensive processes are often perplexing.

Knowledge-intensive processes are executed by domain experts called knowlegde-
workers, such as physicians, lawyers, and insurance clerks. The curse of the process is
primarily determined by the decisions of the knowledge-workers, which are based on
experience and case-specific information. Furthermore, knowledge-intensive processes
are usually human-centered with little to no automation.

Novel modeling approaches fitted to knowledge-intensive processes have been pro-
posed. Among them are case management approaches [1, 17]. In case management,
knowledge workers gather, create, and maintain data. A case (process instance) evolves
around this data. Every case has one central object, the case object (sometimes case
folder). A case model describes both the data and the activities involved in a case as
well as dependencies among them. Case management approaches can model knowledge-
intensive processes more concisely than imperative languages. However, creating con-
sistent and correct models can be difficult due to the inherent complexity and hid-
den dependencies. We propose a metamodel, consistency and correctness criteria for

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

fragment-based case management (fCM) [9]. fCM models are highly modular and cap-
ture data-centric processes concisely; however, they contain hidden dependencies, e.g.,
the behavior of the process is constrained by cardinality constraints in the data model.
The criteria that we propose can be used to assist modelers to avoid mistakes.

In the next section, we introduce fCM with a metamodel and an example. Based
on this, we present consistency and correctness criteria (Sect. 3). In Sect. 4, we discuss
related work. Finally, we conclude and discuss our contribution (Sect. 5).

2 fCM Metamodel and Example

As depicted in Fig. 1, an fCM case model consists of a data model (domain model), a
process model (fragments), and a goal specification called termination condition [9]. The
data model consists of classes and (binary) associations among them1. Each class has an
object life cycle (OLC), which defines the behavior of respective objects. A dedicated
case class denotes the central object which is created exactly ones for each case.

An OLC is a finite state transition system. For each class, a set of states and state
transitions is defined. This object behavior is instantiated by the process: knowledge
workers execute activities that create data objects and update their states accordingly.

Activities are included in small control flow graphs, the so-called fragments. Activi-
ties read and write data objects that belong to a single input- and output-set, respectively.

CaseModel

DomainModel

ClassAssociation

AssociationEnd

+ lowerBound : uint

+ upperBound : uint

ObjectLifeCycle

State

StateTransition

Fragment

ControlFlowNode

ControlFlow

ObjectConfiguration

DataCondition

Event XORGatewayActivity

TerminationCondition
*

1..*

*

*

1

1..* 1

1

target1

in*

source1

out*

1..*

*2

1

*

1..**

1

1

out*

source

1

in

*

target1

1

1

1

1..*

*
outputSet

1

*
inputSet*

*
*outputSets

1..*

1

1

1..*

1
1caseClass

DataObjectNode

+ isSet : bool

DataSet
1

*

*
*

Fig. 1. fCM metamodel: a case model comprises a domain model including classes and associations,
a set of fragments, and a termination condition.

1 Due to space limitation, we do not consider goal cardinality constraints, which have been
introduced in [6, 8].

2 Stephan Haarmann

Such objects are specified by data object nodes, which consist of an object configuration
specifying the class and the state of the object and of an indicator (isSet, depicted as |||)
showing whether multiple object’s of the same type in the same state may be read.

Some fragments have start events marking the beginning of a new case. Such an
event can create data objects. Also, a fragment can branch conditionally (XOR-Gateway).

While a fragment is similar to an imperative process model, all fragments operate on
shared data. Thus, data requirements of activities can be used to model dependencies
among fragments declaratively. At run-time, knowledge workers can instantiate and
execute fragments repeatedly and concurrently if the activities’ data-requirements permit.

A case that meets the termination condition can be closed by the knowledge workers.

Conference
Paper1..1

0..1000

0..5
1..1

ReviewDecision

1..1

3..5

<<case object>>

0..1

0..1

Fig. 2. Domain model of the paper submis-
sion and reviewing phase.

For an example, consider the paper sub-
mission and reviewing at an academic confer-
ence. The domain model Fig. 2 comprises the
classes Conference, Paper, Review, and
Decision. Conference is the case class.
For each conference, multiple papers can be
submitted; for each paper, multiple reviews
can be created; for each paper, a decision is
made based on at least three reviews.

Figure 3 shows the OLCs for the classes
in Fig. 2. All but one OLC are described by a sequence of states, but OLCs can branch
in case of alternative state progression and even contain disconnected subgraphs in case
of alternative initial states. A decision object can be in one of the two alternative states
accepted and rejected. OLCs do not define initial or final states. Since activities, create
and change data objects, initial and final states are encoded in the process behavior.
Adding them to the OLCs would add redundancy but provide only little value.

The case behavior is defined by a set of fragments (see Fig. 4). The example has
one start event in fragment f1. When the start event occurs, a new case is started; the
conference object is created; and activity “open submission” is enabled. Afterwards, the
requirements of “submit paper” in fragment f2 are satisfied. It can be executed repeatedly.
Eventually, the knowledge workers perform “close submission” (f1) changing the state of
the conference object and disabling fragment f2 consequently. It also changes all papers

de cis ion

rejectedaccepted

re vie w

consideredavailablerequired

con fe re n ce

closed for
submissions

open for
submissions

scheduled reviewing
closed

reviewedin_reviewsubmitted

paper

Fig. 3. Object life cycles for the classes in the domain model (Fig. 2)

Fragment-Based Case Management Models: Metamodel, Consistency, &
Correctness 3

to state in review (shown by the set indicator |||). Fragment f3 can hence be executed to
assign reviewers to papers. From the domain model, we know that each paper has at most
5 reviews. Therefore, fragment f3 can at most be executed 5 times for each paper. As soon
as a reviewer has been assigned, the review can be created (fragment f4). While there
is a dependency between the fragments f3 and f4, a review can be created before, after,
or during the assignment of other reviewers. The order is determined by the knowledge
workers. Similarly, activity “decide on paper” (fragment f5) can be executed as soon
as all reviews assigned to a particular paper have been created. The activity has three
possible outcomes: if there are less than 5 reviews for the paper, an additional reviewer
may be assigned (output set {review[required]}; if there are at least 3 reviews, the paper
may be rejected (output set {paper[rejected],reviews[considered],paper[reviewed]})
or accepted (output set {paper[accepted],reviews[considered],paper[reviewed]}). The
different output sets are not part of the visual notation. Once all papers of the conference
are in state reviewed, the reviewing can be closed (fragment f1).

The termination condition conference[reviewing closed] is satisfied after
fragment f1 has been executed completely. The case can be closed.

conference
scheduled

submit paper

review paper

open
submission

close
submission

assign
reviewer

paper

[in review]

conference
[open for

submissions]

conference

[scheduled]

conference
[closed for

submissions]

conference
[open for

submissions]

paper

[submitted]

paper

[in_review]

review

[available]

review

[required]

review

[required]

decide on
paper

reviews

[available]

paper

[in review]

reviews

[considered]

decision

[rejected]

decision

[accepted]

papers

[submitted]

papers

[in review]

paper

[reviewed]

review

[required]

close
reviewing

papers

[reviewed]

conference
[reviewing

closed]

f1 f2

f5f4

f3

start event

Activity

[state]

data object

isSet = true

data flow

control flow

Legend:

Fig. 4. Fragments for the paper submission and reviewing at an academic conference. Fragment
f1 captures the progression of the conference. Fragment f2 handles the paper submission, f3 the
assignment of reviewers, f4 the creation of reviews, and f5 the decision whether a paper is accepted,
rejected, or an additional review is required.

4 Stephan Haarmann

3 Consistency and Correctness Criteria

As imminent from the example, all parts of the case model play together during a case.
Fragments are connected through shared data, whose structure and behavior is modeled
by the domain model and OLCs. The knowledge workers choose from enabled activities
to progress the case towards the termination condition. Therefore, it is important that i)
the parts are correctly modeled and ii) consistently integrated. In this section, we briefly
sketch some structural correctness and consistency criteria that must be satisfied.

Assumptions. While the domain model focus on structuring the data, associations have
behavioral implications. For one, they may define a partial order in which objects must
be created [15]. In the example, every review requires a paper, but a paper may have no
reviews (yet). Consequently, the review cannot be created before the paper. However,
such an order can only be inferred if one object depends on another. Therefore, we
require that all associations are existential: at least one of the corresponding lower
bounds must be positive. Furthermore, we only allow one association between a pair of
classes and disallow many-to-many associations (one of the association’s upper bounds
must be 1). If these assumptions are satisfied, new associations are only established
when new objects are created, e.g., activity “assign reviewer” reads a paper and creates
and associates a review. If the assumptions are violated, the domain model can be reified:
new classes can be introduced in place of the violating associations.

Additionally, we make assumptions about the structure of fragments. We assume that
fragments are acyclic. This does not limit the expressiveness since loops can be resolved
into repeatable fragments. For example, in a purely imperative process model, activity
“submit paper” would be part of a loop instead of a fragment. We furthermore assume
that each fragment is either initial or non-initial. This means they either start with an
event (e.g., fragment f1 in Fig. 4) or with an activity (all fragments but f1)—never both.

Consistent I/O Behavior. Since fCM models consist of data and behavioral parts, most
dependencies apply to the I/O behavior of activities. Correct I/O behavior depends on the
domain model, the object life cycles, other activities, and even the termination condition.

First, all data requirements must be satisfiable. Therefore, some activity must produce
the object configuration (object in a certain state) required by other activities or the termi-
nation condition. This means, each data configuration used in a data object node or a data
condition should be referred by a data object node that takes part in at least one output set.
For example, the object configuration conference[reviewing closed] must
be written by at least one activity, i.e., “close submission”. Assuming the termination
condition would instead be conference[proceedings published] and the
state would be an allowed successor of reviewing closed, the termination condition would
be insatiable since no activity writes the conference object in the respective state.

Furthermore, for each output set of an activity must exist a respective input set so
that the combination conforms to the constraints of the OLCs and the domain model.

A valid input-output-set combination is OLC conform [9]: all the subsumed state
transitions must be present in the OLCs. If an activity “skip submission” changes the
state of conference from scheduled to closed for submission, the OLC would be violated.
This property is called object life cycle conformance.

Fragment-Based Case Management Models: Metamodel, Consistency, &
Correctness 5

Next, each object that is created requires a specific context, a set of objects it depends
on. The required context is defined by the existential associations. In the example, the
decision requires a paper and three to five reviews. This context must be provided by
the input-output-combination. The required objects must either be read or co-created.
If activity “assign reviewer” would not read a paper object, the requirements for the
review would be violated. If execute anyway, the created review object would violate the
cardinality constraints specified in the domain model (cf. Fig. 2).

What about the reviews required for a decision? According to the cardinality con-
straints, a decision existentially depends on three to five reviews. In such cases a set of
objects (isSet=true visualized by |||) must be read, e.g., a set of at least three reviews
must be read to create a decision. We call this mandatory batch behavior.

Finally, if a set of objects is read, it must be clearly defined. Therefore, each input set
that contains a data object node with isSet=true must also contain a data object node
with isSet=false for an associated class. The respective object is used to determine
the set of objects that is co-read when executing the respective activity. In the example,
“decide on paper” reads all reviews that belong to the paper. Without the paper, the set
cannot be determined from the context.

The presented criteria are not domain specific, i.e., they do not only apply to the
example fCM model but to all possible fCM models. Any case model that satisfies all
criteria presented in this section is structural consistent. The structure of one part (e.g.,
the fragments) does not contradict the structure of other parts (e.g., the domain model).

4 Related Work

The fragment-based case management [9] approach is a production case management
approach based on [11]. A metamodel for fCM has been proposed in [5]. The metamodel
is close to [9] and includes elements that are fix for all models, such as generic life cycles
for activities. Additionally, extensions have been proposed that consider associations [7]
and cardinality constraints [6, 8]. The metamodel presented in this paper is the first fCM
metamodel considering associations and cardinality constraints.

Besides fCM there are other approaches combining information from process and
data modeling. Combi et al. [2] and Meyer et al. [12] combine data models, i.e., UML
class diagrams, and process models, i.e., BPMN diagrams. [2] describes and detects
inconsistencies while [12] derives SQL-queries for enactment. Montali et al. [13] intro-
duce DB-nets—a Petri net-based formalism for modeling data-base accessing processes
that adhere to data constraints (e.g., primary key, foreign key, and cardinality constraints).
Therefore, they introduce a transaction mechanism to the processes. Ghilardi et al. [4]
present catalog-nets to formally model processes with access to read only data-bases.
While these approaches elaborate the connection between data and process, they are
purely imperative and not suited for knowledge-intensive processes. However, DB-nets
and catalog nets are interesting formalisms, which may be suited to formalize fCM’s
semantics and to define/verify behavioral correctness notions.

Other case management approaches exist. The two most prominent ones are the
Guard Stage Milestone [10] approach and the derived Case Management Model and
Notation [14] standard. Both approaches arrange activities into stages and compose

6 Stephan Haarmann

behavior based on (data-based) pre- and post conditions. While the approaches assume
a data model (called information model), they do not specify how it is modeled and
integrated into the process specification.

5 Conclusion

Case models capture knowledge-intensive processes, which are often data-driven, multi-
variant, and non-repeatable. Consequently, models become quite complex as they must
integrate data and flexible processes. In this paper, we present a metamodel, consistency
and correctness criteria for fCM models. All fCM models must satisfy these criteria.

Future work may elaborate them. First, formal definitions should be provided, e.g.,
using first-order logic or the object constraint language. Such definitions can be the base
for implementing i) a verification tool that detects violations of the criteria and ii) a
modeling tool that support case designers. Such a tool can highlight violations and offer
auto-completion/correction. For example, when a case designer models an activity that
creates a data object, all required objects (according to the domain model) can be added
to the activity’s input set if they are created by other activities or output sets otherwise.

Structural correctness and consistency is important and verification is computational
in-expensive compared to state space analysis. However, such criteria cannot guarantee
correct behavior. In future work, we want to investigate behavioral correctness criteria
that apply to case models. A first example is weak termination: in the initial state, it
should be possible to reach a state that satisfies the termination condition.

Furthermore, fCM does not capture all aspects of a case. Knowledge-intensive pro-
cesses are also about knowledge workers, their rights, capabilities, and collaborations
among them [3]. In the future, the fCM metamodel and language may be extended to ac-
count for the user perspective. The correctness and consistency criteria may subsequently
be refined to consider the additional information.

Nevertheless, we believe that the presented metamodel and criteria can lead to tool
support for fCM that may ultimately improve the accessibility of the fCM approach.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of processes and data:
Connecting different perspectives. In: Conceptual Modeling - 37th International Conference, ER
2018, Xi’an, China, October 22-25, 2018, Proceedings. pp. 236–250 (2018)

3. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: Characteristics,
requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)

4. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri nets with parameterised data - modelling
and verification. In: Business Process Management - 18th International Conference, BPM 2020,
Seville, Spain, September 13-18, 2020, Proceedings. pp. 55–74 (2020)

5. Gonzalez-Lopez, F., Pufahl, L.: A landscape for case models. In: Enterprise, Business-Process
and Information Systems Modeling - 20th International Conference, BPMDS 2019, 24th
International Conference, EMMSAD 2019, Held at CAiSE 2019, Rome, Italy, June 3-4, 2019,
Proceedings. pp. 87–102 (2019)

Fragment-Based Case Management Models: Metamodel, Consistency, &
Correctness 7

6. Haarmann, S., Montali, M., Weske, M.: Technical report: Refining case models using cardinality
constraints. CoRR abs/2012.02245 (2020), https://arxiv.org/abs/2012.02245

7. Haarmann, S., Weske, M.: Correlating data objects in fragment-based case management. In:
Business Information Systems - 23rd International Conference, BIS 2020, Colorado Springs, CO,
USA, June 8-10, 2020, Proceedings. pp. 197–209 (2020)

8. Haarmann, S., Weske, M.: Data object cardinalities in flexible business processes. In: Business
Process Management Workshops - BPM 2020 International Workshops, Seville, Spain, September
13-18, 2020, Revised Selected Papers. pp. 380–391 (2020)

9. Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution. In:
Business Process Management Forum - BPM Forum 2016, Rio de Janeiro, Brazil, September
18-22, 2016, Proceedings. pp. 38–54 (2016)

10. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F.F.T., Hobson, S., Linehan, M.H.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Web Services and Formal Methods - 7th
International Workshop, WS-FM 2010, Hoboken, NJ, USA, September 16-17, 2010. Revised
Selected Papers. pp. 1–24 (2010)

11. Meyer, A., Herzberg, N., Puhlmann, F., Weske, M.: Implementation framework for production
case management: Modeling and execution. In: 18th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2014, Ulm, Germany, September 1-5, 2014. pp. 190–199
(2014)

12. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data dependencies
in business processes. In: Business Process Management - 11th International Conference, BPM
2013, Beijing, China, August 26-30, 2013. Proceedings. pp. 171–186 (2013)

13. Montali, M., Rivkin, A.: From DB-nets to coloured Petri nets with priorities. In: Application and
Theory of Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019,
Aachen, Germany, June 23-28, 2019, Proceedings. pp. 449–469 (2019)

14. (OMG), O.M.G.: Case management model and notation (CMMN) (December 2016), https:
//www.omg.org/spec/CMMN

15. Snoeck, M.: Enterprise Information Systems Engineering - The MERODE Approach. The
Enterprise Engineering Series, Springer (2014)

16. Swenson, K.D.: Position: BPMN is incompatible with ACM. In: Business Process Management
Workshops - BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised
Papers. pp. 55–58 (2012)

17. Swenson, K.D.: State of the art in case management - 2013 (2012), https://www.aiim.
org/PDFDocuments/CaseManagement2013.pdf

All links were last followed on January 18, 2021.

8 Stephan Haarmann

Towards Decision Management for Robotic
Process Automation

Simon Siegert and Maximilian Völker

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
simon.siegert@student.hpi.de

maximilian.voelker@hpi.de

Abstract. Robotic process automation (RPA) is a rapidly growing tech-
nology for automating digital processes. While RPA allows the automation
of common tasks performed on a computer, there are only rudimentary
possibilities to represent decisions in RPA models. Especially workflows
that involve more than simple yes-no questions quickly result in confusing
models, which are difficult to understand and maintain. To overcome
these issues, an integration of an established decision management ap-
proach, Decision Model and Notation (DMN), into RPA is proposed and
motivated in this paper.

Keywords: Robotic Process Automation, RPA Lifecycle, Decision Management

1 Introduction

Automation based on process models has long been an area of interest in business
process management (BPM), for both the research and the enterprise world [13].
Robotic process automation (RPA) is a novel automation approach employing
software robots to automate undemanding tasks on the computer, that recently
gained more attention in research [2]. Whereas BPM systems target organization-
wide processes, RPA automates sequences of tasks that employees perform locally
on their computers by imitating the employee’s behavior on the graphical user
interface level [6, 12], making it a useful addition to BPM [14].

To enable business users and employees to create their own automations,
many current RPA vendors focus on the visual representation and modeling
of RPA robots [3]. However, a preliminary analysis of different RPA products
(UIPath, Blue Prism, Automation Anywhere, and Automagica) revealed disad-
vantages of these approaches, especially with respect to the design of decisions.
A majority of the representation types examined only supported simple if/else-
or switch/case constructs to model decisions. Since each decision branch must
be represented explicitly, the RPA models become complex, especially for more
elaborate decisions. This may lead to decision-intensive processes being discarded
for automation using RPA due to the excessive modeling effort and decreased
maintainability, although they might be well suited for automation.

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

This paper outlines a possible solution to overcome the issue of representing
complex decisions in RPA models. Based on the mature standard for decision
management, DMN [11], a way of integrating decisions in RPA robots is delineated,
maintaining the focus on business users and intuitive usability.

2 Related Work

In BPM, similar problems regarding the modeling of decisions in workflows have
been reported, such as complex, nested structures which are hard to maintain
and understand [1]. For one of the associated modeling notations, BPMN [10],
the problem was addressed by separating the decision logic and the control flow
using DMN (Decision Model and Notation) [5, 7]. DMN allows the modeling of
decision requirements and the specification of the underlying decision logic in
the form of a decision table [11]. In BPMN models, DMN is used to encapsulate
the previously branched and nested decisions into a single new decision activity.
This allows decision-intensive business process models to be presented in a clear
and compact way. Even approaches to extract the decision logic from process
models and replace it with DMN have been proposed [4].

However, although current graphical RPA approaches suffer the same prob-
lem, it has, to the best of our knowledge, not yet been addressed in research.
Nevertheless, since RPA software is known to be highly rule-based [12], it is
expected to benefit from the integration of a proven technique for data-based
and rule-based decisions, such as DMN.

3 Motivation

Fig. 1. Scenario implemented with explicitly mod-
eled decisions (intentionally not readable)

Consider the following scenario:
In a car dealership, orders
placed by employees for the
company are to be released. To
do this, they send their orders to
a secretary, who decides which
departments in the company
are eligible to approve an or-
der. Since orders can have differ-
ent costs and categories (such
as ‘New Car’ or ‘Spare Parts’),
and depending on this can have
one or more parties in the com-

pany authorized to review them (e.g., ‘Management’ or ‘Sales Department’), the
decision has a certain degree of complexity.

Implementing the scenario with RPA is a viable option here, as the costs and
category extraction, the decision, and the email notifications can be automated
using common RPA features. Figure 1 shows a possible implementation with

10 Simon Siegert and Maximilian Völker

the open source version of the RPA software Automagica1, demonstrating that
explicit decision modeling can lead to an unreadable spaghetti-like model.

Here, the explicit but necessary modeling of the decision with the different
options of responsibility to decide on orders as well as the different combinations
of the input variables ‘cost’ and ‘order category’ leads to a nested decision tree
that is difficult to understand.

4 Integrating RPA with DMN

The research proposal is to apply elements from decision management of BPM
to the modeling and implementation of RPA systems. Hiding the complexity of a
decision using a decision engine makes the RPA process model more understand-
able. For example, Figure 2 shows a prototypical implementation of a software
robot that executes the same program logic as the model in Figure 1, but requires
much less modeling elements as the decision resides in a decision table that is
evaluated by a decision engine in the task “Decide on responsible party”. The

Fig. 2. Order review scenario modeled with RPA and DMN

decision takes place within a DMN decision table, which is not shown here. To
create the decision table, however, further modeling effort is necessary, especially
for users who are not familiar with DMN. Thus, two different modeling languages
have to be learned to create RPA process models.

The research approach is to investigate for all phases of the RPA lifecycle,
as defined by König et al. [9] and Jimenez-Ramirez et al. [8], how decisions in
RPA bots can be supported by DMN and how each lifecycle phase needs to be
adapted compared to existing approaches. The selection of suitable business pro-
cesses for automation, necessary capabilities of modeling tools and requirements
for RPA architectures (e.g., local decision engine versus external decision service)
as well as their implementation will be compared and discussed. Communication
flows between individual software components, verification of correct behavior
and efficient operation are also to be considered. In order to demonstrate the
feasibility and to evaluate the benefits of integrating DMN in robotic process
automation, several prototypes addressing the different architecture types (e.g.,

1 https://github.com/automagica/automagica/tree/
ae8a1846f23df6497e725c8db198b4420da82f12 (latest open source version)

Towards Decision Management for Robotic Process Automation 11

decision engine embedded in the RPA robot or connection to an external decision
engine) will be implemented and compared.

5 Conclusion

The proposed introduction of a dedicated decision component for RPA is ap-
plicable for rule-based and data-focused RPA processes. Although the decision
component should not and cannot be applied to every decision in RPA processes
(simple decisions can still be mapped using conventional means such as if − else),
more complex and data-driven processes are expected to benefit from the use of
more sophisticated decision management. Overall, it may lead to better monitor-
ing, easier updating, and higher overall comprehensibility of RPA models and
executions compared to explicitly modeled decision trees, which highlights the
need for further research in this direction. Future work could analyze whether
and how DMN in RPA could benefit from the integration of machine learning
technologies and conduct a user study to analyze the trade-off between reduced
model complexity and additional effort due to an additional modeling language.

12 Simon Siegert and Maximilian Völker

References

1. van der Aa, H., Leopold, H., Batoulis, K., Weske, M., Reijers, H.A.: Integrated process
and decision modeling for data-driven processes. In: Reichert, M., Reijers, H.A.
(eds.) Business Process Management Workshops. pp. 405–417. Springer International
Publishing, Cham (2016)

2. Van der Aalst, W.M., Bichler, M., Heinzl, A.: Robotic process automation (2018)
3. Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process

automation (rpa): A case study. In: Figueroa-García, J.C., López-Santana, E.R.,
Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) Applied Computer Sciences in Engineering.
pp. 65–71. Springer International Publishing, Cham (2017)

4. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
Advanced Information Systems Engineering. pp. 349–366. Springer International
Publishing, Cham (2015)

5. Biard, T., Le Mauff, A., Bigand, M., Bourey, J.P.: Separation of decision modeling
from business process modeling using new “decision model and notation” (dmn) for
automating operational decision-making. In: Camarinha-Matos, L.M., Bénaben, F.,
Picard, W. (eds.) Risks and Resilience of Collaborative Networks. pp. 489–496.
Springer International Publishing, Cham (2015)

6. Flechsig, C., Lohmer, J., Lasch, R.: Realizing the full potential of robotic process
automation through a combination with bpm. In: Bierwirth, C., Kirschstein, T.,
Sackmann, D. (eds.) Logistics Management. pp. 104–119. Springer International
Publishing, Cham (2019)

7. Hasić, F., Devadder, L., Dochez, M., Hanot, J., De Smedt, J., Vanthienen, J.:
Challenges in refactoring processes to include decision modelling. In: Teniente, E.,
Weidlich, M. (eds.) Business Process Management Workshops. pp. 529–541. Springer
International Publishing, Cham (2018)

8. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the
early stages of the robotic process automation lifecycle. In: International Conference
on Advanced Information Systems Engineering. pp. 446–461. Springer (2019)

9. König, M., Bein, L., Nikaj, A., Weske, M.: Integrating robotic process automation
into business process management. In: Asatiani, A., García, J.M., Helander, N.,
Jiménez-Ramírez, A., Koschmider, A., Mendling, J., Meroni, G., Reijers, H.A. (eds.)
Business Process Management: Blockchain and Robotic Process Automation Forum.
pp. 132–146. Springer International Publishing, Cham (2020)

10. Object Management Group (OMG): Business Process Model and Notation (BPMN)
Specification, Version 2.0. https://www.omg.org/spec/BPMN/2.0/ (2011)

11. Object Management Group (OMG): Decision Model and Notation (DMN) Specification,
Version 1.3. https://www.omg.org/spec/DMN/1.3/ (2019)

12. Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S.J., Ouyang, C., ter
Hofstede, A.H., van de Weerd, I., Wynn, M.T., Reijers, H.A.: Robotic process
automation: Contemporary themes and challenges. Computers in Industry 115, 103162
(2020)

13. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, third edn. (2019)

14. Willcocks, L.P., Lacity, M., Craig, A.: The IT function and robotic process automation.
The Outsourcing Unit Working Research Paper Series (15/05), The London School of
Economics and Political Science, London, UK (2015)

Towards Decision Management for Robotic Process Automation 13

Towards Real-Time Progress Determination of
Object-Aware Business Processes

Lisa Arnold, Marius Breitmayer and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{lisa.arnold, marius.breitmayer, manfred.reichert}@uni-ulm.de

Abstract. To stay competitive, companies need to continuously im-
prove and evolve their business processes. In this endeavour, business
process optimisations and improvements are key elements. In particu-
lar, the monitoring of business processes enables the early discovery of
problems and errors already during process enactment. Two approaches
can be pursued to achieve this: real-time, also called online monitoring,
and offline monitoring. A subtask of real-time monitoring is to determine
the current progress of a business process, which is particularly challeng-
ing if the latter is composed of loosely coupled, smaller processes that
interact with each other, like object lifecycle processes in data-centric
approaches to BPM, which result in large process structures. This posi-
tion paper discusses the challenges of determining the progress of such
object-aware processes in real-time and defines research questions that
need to be investigated in further work.

Keywords: object-aware business process, process monitoring, progress
determination, online/real-time monitoring

1 Introduction

Object-aware business processes consist of interacting objects whose relations
are defined in a relational process structure [1]. Each object has attributes and
a lifecycle process describing its behaviour [2], whereas coordination processes
structure and control the interactions between multiple lifecycle processes, i.e.,
the overall business process [3]. Lifecycle processes comprise states (including
exactly one start and at least one end state), and state transitions. Each state,
in turn, consists of connected steps, where each step corresponds to an attribute
update operation. Based on this information, electronic forms are auto-generated
during lifecycle execution for each state. As an example, Figure 2 shows a life-
cycle process with one decision step. In general, an object-aware business pro-
cess is composed of multiple lifecycle processes of the same or different type,
resulting in a dynamically evolving process structure during runtime. In this
context, a variety of configurations and constellations of object-aware processes
(i.e., lifecycle and coordination processes), running concurrently to each other,
becomes possible [3]. Additionally, there are coordination constraints between
objects that require interactions between the corresponding lifecycles. Due to

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

Fig. 1. Lifecycle structure in step-based view

this high complexity, there is no intuitive solution for monitoring and measuring
the progress of an object-aware business process and the corresponding process
structure respectively.

Several challenges to determine and define progress metrics in object-aware
process management exist. First, no known measures for object-aware progress
exists. Second, progress can be interpreted in different ways. Often, it is described
as fundamental improvement through significant changes of the current status.
In general, however, there is no broadly accepted definition of the term progress.
Third, measuring points for determining the progress of an object-aware busi-
ness process are missing. Fourth, to determine the progress the current execution
status as well as the path yet to be taken (including all routing decisions) are
required. Fifth, a time delay in the calculation of the progress or problems in
estimating the execution path can occur. Thus, we need to define metrics for
determining the progress of an object-aware process in all possible constella-
tions. In addition, the progress of many individual processes (i.e., lifecycles and
coordination process) needs to be properly merged to determine overall progress.

2 Related Work

In [4], an approach to measure the progress of activity-centric business models
is discussed. An approach for monitoring processes and predicting their progress
with data state transition events is presented in [5]. In turn, [6] improves progress
in activity-centric processes using object state transition [5]. By contrast, no
approaches exist for determining progress in object-aware business process man-
agement. Progress measurement of processes in other fields than BPM can be
found, for example, in construction [7], software engineering [8], and software
management [9].

3 Research Questions

As a first step towards the online progress calculation of an object-aware process,
it must be possible to determine the progress of any snapshot of this process.

Towards Real-Time Progress Determination of Object-Aware Business
Processes 15

Moreover, the total progress of the object-aware process (i.e., the overall business
process) is determined by the progress of its individual lifecycles. In a nutshell,
any approach for determining the progress of an object-aware process needs to
answer the following research questions:

Research Question 1 How can the progress of a single lifecycle process with
its state-based view form be determined?

Research Question 2 How can the progress of the processing of a single
state within a lifecycle process be measured?

Research Question 3 How can the progress of multiple, interacting (i.e.,
interrelated) lifecycles be determined?

Research Question 4 How does a coordination process affect the progress
of an object-aware business process?

Research Question 1 considers single lifecycle processes in their abstracted
(i.e., state-based) view, whereas Research Question 2 deals with determining the
intra-state progress. Answering Research Questions 1 and 2 will enable us to fully
determine the progress of a lifecycle. For example, for every lifecycle depicted
in Figure 2, a progress between 0 (i.e., instantiation of a lifecycle) and 100 (i.e.,
execution of an end state and lifecycle completion) may be assigned. Research
Question 3 extends progress determination to a full relational process structure
consisting of multiple interacting lifecycle processes (see Figure 2). The latter
form a large process structure whose overall progress needs to be determined.
Research Question 4 considers the coordination (depicted as dashed arrows in
Figure 2) of the relational process structure to refine Research Question 3. With
Research Question 4 the total progress of object-aware business processes can
be addressed. All four research questions need to be answered to be able to
determine the total progress of an object-aware business process.

Fig. 2. Complex structure of an object-aware business process

16 Lisa Arnold et al.

4 Conclusions

This position paper discussed the challenges to be tackled when determining the
progress of object-aware processes and the potentially very large lifecycle process
structure emerging during their execution. As a major benefit of being able to
determine the progress of object-based business processes, the real-time mon-
itoring of the underlying large process structures becomes possible. Although
just-in-time business scenarios are common in many business areas, contempo-
rary business process management tools do not provide a sufficient and timely
measurement of the progress of the emerging process structures. Due to the
complex structure, research questions were addressed, which should be clarified
in further work. Thereby, approaches based on graph theory can be considered
for discussing the presented research questions. The results can be refined us-
ing event log data in combination with approaches from probability theory and
machine learning. In this way, the results of decision steps as well as the total
workload necessary of a process can be predicted to determine the progress more
accurately.

Acknowledgement. This work is part of the ZAFH Intralogistik, funded by the
European Regional Development Fund and the Ministry of Science, Research and
Arts of Baden-Württemberg, Germany (F.No. 32-7545.24-17/3/1).

References

1. Steinau, S., Andrews, K. & Reichert, M. The relational process structure
in International Conference on Advanced Information Systems Engineering
(2018), 53–67.

2. Steinau, S., Andrews, K. & Reichert, M. Executing Lifecycle Processes in
Object-Aware Process Management in Data-Driven Process Discovery and
Analysis (Springer, 2019), 25–44.

3. Steinau, S., Künzle, V., Andrews, K. & Reichert, M. Coordinating business
processes using semantic relationships in IEEE 19th Conf on Business In-
formatics (CBI) (2017), 33–42.

4. Koschmider, A., Vara, J. L. d. l. & Sánchez, J. Measuring the progress of
reference model-based business process modeling in INFORMATIK 2010 (),
218–229.

5. Herzberg, N. & Meyer, A. Improving process monitoring and progress pre-
diction with data state transition events. Hasso Plattner Institute at the
University of Potsdam (2013).

6. Herzberg, N., Meyer, A. &Weske, M. Improving business process intelligence
by observing object state transitions. Data & Knowledge Engineering, 144–
164 (2015).

7. Zhang, X. et al. Automating progress measurement of construction projects.
Automation in Construction, 294–301 (2009).

Towards Real-Time Progress Determination of Object-Aware Business
Processes 17

8. Sommerville, I. Software engineering 9th Edition. ISBN-10, 18 (2011).
9. Kerzner, H. Project management: a systems approach to planning, schedul-

ing, and controlling (John Wiley & Sons, 2017).

18 Lisa Arnold et al.

Towards a Framework for Data Enhanced
Process Models in Process Mining

Jonas Cremerius

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
jonas.cremerius@hpi.de

Abstract. Understanding and improving business processes have be-
come important steps towards success for organizations. Getting insights
about a process is not only based on the control flow, but also on the data
generated within the process. Today, almost every process step generates
data, especially in the health care domain. So far, most analyzes inside
a process model are limited to time analyzes and identification of deci-
sion logic. However, various attributes can be linked to events, such as
the number of abnormal lab values derived from a lab test, which could
be displayed in the process model. This can help to explore the process
with domain experts, where they can choose the attributes of interest for
each event and observe their influence on the process, i.e. the influence of
abnormal lab values on the treatment process. Therefore, the interplay
of event attributes and the control flow can be observed directly in the
process model.

Keywords: Process Mining · Process Enhancement · Process Model
Extension

1 Introduction

Business process models play a central role in exploring and analyzing the orga-
nization’s business processes. With the help of process mining, process models
can be derived from real-world process execution data [3]. Process mining is of-
ten conducted in the healthcare sector, as hospitals are becoming increasingly
aware of the need to improve their processes [8]. Despite the increasing avail-
ability of data, adequate support for displaying or analyzing event attributes
in a discovered process model is still lacking. So far, process enhancement in-
side the discovered process model is limited to time analyzes and decision logic,
whereas organizational aspects are separately analyzed [15]. This is also repre-
sented in today’s process mining tools. Fluxicon Disco1 provides time analyzes
only, whereas Lana Labs2, Celonis3, and ProM4 do not provide attribute ana-
lyzes inside the process model. Only Process Diamond5 allows displaying one

1 https://www.fluxicon.com/disco/
2 https://www.lanalabs.com/
3 https://www.celonis.com/
4 https://www.promtools.org/
5 https://www.processdiamond.com/

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

attribute, which must be the same for all events. In several treatment processes,
such as the diagnosis and treatment of heart failure, a large amount of data is
generated [1]. Example events include “Analyze Lab Values” and “Treat Patient
in Intensive Care Unit (ICU)”. For both events, a different set of attributes is
produced, such as the number of abnormal lab values and the Glasgow Coma
Scale (GCS). Considering the effect of these attributes on a process may pro-
vide insights about a certain diagnostic or treatment. As current process mining
tools are not capable of exploring a process in respect to attribute values, we
propose a respective functionality that enables business analysts and domain
experts to identify conspicuous behavior not only in the control flow, but also
in the attribute values.

2 Related Work

Process Enhancement is the extension or improvement of an existing process
model using information about the actual process recorded in some event log [3].
There exist several approaches which analyze the activity duration and waiting
time in a process model to identify, for example, bottlenecks [10,14]. Additional
analyzes inside the process model include identification of constraints at deci-
sion points [7, 11]. Further, Process Enhancement involves the organizational
analyzes by looking at the assignment of human resources to process activi-
ties [12]. Enhancement is also conducted offside the process model where, for
instance, different process characteristics are correlated with each other [5, 13].
Case and event attributes have been used in filtering process variants and clus-
tering of traces. For instance, [4] clusters traces to discover process variants by
different case and event attributes, such as age and the body part of an image
analyzes.

3 Research Objective

None of the approaches mentioned above looked into displaying event attributes
directly in the process model. So far, they are limited to time analyzes and
identification of decision points. Our research aims to fill this gap and provide
a framework to link event attributes with their respective event in the process
model. Today’s data sets, such as MIMIC-IV, include various event attributes,
such as the number of abnormal lab values [2]. As processes can get complex,
different attributes might be interesting for the events. An example process is
displayed in Fig. 1, which illustrates a simple treatment process. The events have
their attributes attached in the process model. The first two events ”Perform X-
Ray” and ”Perform CT” show the frequency of findings in specific body regions
(heart and lung). After that, the lab values are analyzed, which show the fre-
quency of abnormal lab values observed for each lab value. Then, the treatment
is conducted, which can happen in the Intensive Care Unit (ICU) or Cardiol-
ogy, where the mean Glasgow Coma Score (GCS) is shown. This process can
be similar for several diseases on this abstraction level. Therefore, the insights

20 Jonas Cremerius

regarding the control flow might be limited. However, the event attributes can
be different, as the glucose level is more interesting for type 2 diabetes and the
creatinine level for kidney disease [6,9]. This could help to assess how meaningful
analyzing a specific lab value for several diseases is. Furthermore, the effect of
an attribute on the process can be explored with the help of a process model.
For example, if the process of patients with an abnormal glucose level is of in-
terest, one could just click on the attribute, triggering filtering according to the
lab value. Then, not only the change in the process flow, but also in the event
attributes can be seen, such as the mean GCS or the frequency of findings in
the heart region of an image analyzes, which might be different for patients with
an abnormal lab value. This could reveal novel insights, as one might not have
thought that patients with an abnormal lab value also have a high prevalence of
findings in the heart region of an X-ray.
We want to enable this kind of analyzes in the process model, which could lead
to a more comprehensive exploration of processes together with a domain ex-
pert. The framework defines how different types of attributes are displayed in
the process model and which computations can be performed on them, such as
minimum, maximum, or mean. As process attributes can be different depending
on the application context, we want to enable the domain experts to choose the
attributes of interest. Nevertheless, an attribute recommendation system could
be implemented, which helps to choose the appropriate attributes for an activity
based on machine learning or descriptive statistics. Additionally, the framework
could help to highlight events sharing the same attributes, such as different lab
values or medical imaging techniques. Therefore, the following research questions
need to be answered:

– How can event attributes be displayed in the process model (categorical vs.
continuous variables)?

– How can the framework help to gain new insights about the process (detec-
tion of process variants, dependencies between attributes, etc.)?

Fig. 1. Process model with data attributes displayed for each event. CT, Computed
Tomography; ICU, Intensive Care Unit; GCS, Glasgow Coma Score

Towards a Framework for Data Enhanced Process Models in Process
Mining 21

4 Conclusion

This position paper discusses the need for looking at the inclusion of event at-
tributes directly in the process model. With the increasing data availability, a
more comprehensive view of the process is possible and different process variants
can be explored. As process models can be used as a means of communication
between process analysts and domain experts, incorporating event data in the
model has the potential to improve that communication by illustrating the con-
trol flow and event attributes in one place.

22 Jonas Cremerius

References

1. Acute and chronic heart failure guidelines, https://www.

escardio.org/Guidelines/Clinical-Practice-Guidelines/

Acute-and-Chronic-Heart-Failure

2. Mimic iv, https://mimic-iv.mit.edu/

3. van der Aalst, W.: Process Mining. Springer Berlin Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49851-4, https://doi.org/10.1007/

978-3-662-49851-4

4. Hompes, B., Buijs, J., Aalst, W., Dixit, P., Buurman, J.: Discovering deviating
cases and process variants using trace clustering (11 2015)

5. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process min-
ing framework for correlating, predicting and clustering dynamic behav-
ior based on event logs. Information Systems 56, 235–257 (Mar 2016).
https://doi.org/10.1016/j.is.2015.07.003, https://doi.org/10.1016/j.is.2015.

07.003

6. Levey, A.S., Perrone, R.D., Madias, N.E.: Serum creatinine and renal function.
Annu Rev Med 39, 465–490 (1988)

7. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Mea-
suring the precision of multi-perspective process models. In: Business Pro-
cess Management Workshops, pp. 113–125. Springer International Publishing
(2016). https://doi.org/10.1007/978-3-319-42887-110, https://doi.org/10.1007/
978-3-319-42887-1_10

8. Martin, N., De Weerdt, J., Fernández-Llatas, C., Gal, A., Gatta, R.,
Ibáñez, G., Johnson, O., Mannhardt, F., Marco-Ruiz, L., Mertens, S.,
Munoz-Gama, J., Seoane, F., Vanthienen, J., Wynn, M.T., Boilève,
D.B., Bergs, J., Joosten-Melis, M., Schretlen, S., Van Acker, B.: Rec-
ommendations for enhancing the usability and understandability of
process mining in healthcare. Artificial Intelligence in Medicine 109,
101962 (2020). https://doi.org/https://doi.org/10.1016/j.artmed.2020.101962,
http://www.sciencedirect.com/science/article/pii/S0933365720312276

9. Olokoba, A.B., Obateru, O.A., Olokoba, L.B.: Type 2 diabetes mellitus: a review
of current trends. Oman Med J 27(4), 269–273 (Jul 2012)

10. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri
nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) Business Process Management Workshops. pp. 15–27. Springer
International Publishing, Cham (2014)

11. Rozinat, A., Mans, R., Song, M., van der Aalst, W.: Discovering
simulation models. Information Systems 34(3), 305–327 (May 2009).
https://doi.org/10.1016/j.is.2008.09.002, https://doi.org/10.1016/j.is.

2008.09.002

12. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for effi-
ciently mining the organisational perspective of business processes. Decision Sup-
port Systems 89, 87–97 (Sep 2016). https://doi.org/10.1016/j.dss.2016.06.012,
https://doi.org/10.1016/j.dss.2016.06.012

13. Schönig, S., Ciccio, C.D., Maggi, F.M., Mendling, J.: Discovery of multi-
perspective declarative process models. In: Service-Oriented Computing, pp. 87–
103. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-
46295-06, https://doi.org/10.1007/978-3-319-46295-0_6

Towards a Framework for Data Enhanced Process Models in Process
Mining 23

14. Wynn, M., Poppe, E., Xu, J., ter Hofstede, A., Brown, R., Pini, A., van
der Aalst, W.: Processprofiler3d: A visualisation framework for log-based
process performance comparison. Decision Support Systems 100, 93 – 108
(2017). https://doi.org/https://doi.org/10.1016/j.dss.2017.04.004, http://www.

sciencedirect.com/science/article/pii/S0167923617300623, smart Business
Process Management

15. Yasmin, F., Bukhsh, F., Silva, P.: Process enhancement in process mining: A lit-
erature review (12 2018)

24 Jonas Cremerius

Detecting Semantic Business Process Model
Clones

Thomas S. Heinze1, Wolfram Amme2, and André Schäfer2

1 German Aerospace Center (DLR)
thomas.heinze@dlr.de

2 Friedrich Schiller University Jena
[wolfram.amme,andre.schaefer]@uni-jena.de

Abstract. Process modeling with languages like BPMN allows process
designers to create the same business process model in various ways.
Detecting model clones, i.e., pairs of business process models sharing a
certain degree of similarity can be difficult. In this paper, we propose an
approach to process model clone detection based upon dominator trees
and targeted at detecting semantically though not necessarily syntactically
similar process models of business processes.

1 Introduction

Duplicated process models is a common issue in business process management and
modeling and in particular relevant when process models are organized in model
repositories [11]. Matching business process models and estimating their similarity
has thus been an important research topic and has many applications, ranging
from analyzing conformance to reference models [3], tracing and identification
of process variants [2] to process model search and clone detection [1]. In this
paper, we address the latter problem of finding process models which share a
certain degree of similarity, which is known as model clone detection in the
literature [11,12]. Note that such model clones can origin from homologous
development [14], where a process designer reuses and modifies an existing model
to generate a new process model. As a result, the original and new model usually
share a high lexical similarity. In contrast, in heterologous development [14],
process models are created independently of each other but implementing similar
functionalities. Thus, such models are not necessarily syntactically similar, i.e.,
can differ in the number of activities and gateways or in their structure. Finding
such semantic clones is in particular hard for business process models due to the
large number of modeling purposes and practices, e.g., block- and graph-oriented
process modeling styles. While differing modeling styles can be found in different
business process modeling languages, multiple paradigms can even exist in the
very same language. A well-known representative for such a language is BPMN.

As an example, consider the two BPMN process models shown on the left-
hand side of Fig. 1. Apparently, both process models implement a similar business
process. In particular, in terms of possible execution traces, the lower model’s

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

+ +

+ +

A

C

B X

E

D

F

X

H

G

+

+

+

+ +

B

E

D

F

A

C

H

G

X

X X

A

B C

E HD G

F

Fig. 1. Business process models (left) and dominator tree (right)

behavior is a subset of the upper model’s behavior (activity G can precede
activity F in the upper model in contrast to the lower model). Estimating the
models’ similarity and therefore identifying them as model clones is though not
straightforward due to the more graph-oriented modeling style of the upper model
and the more block-oriented style of the lower model. Such a pair of process
models is known as a semantic model clone, i.e., two process models which have
similar behavior but do not necessarily share the same syntax and structure [12].

2 Process Model Clone Detection

In order to identify semantic model clones, we propose a model clone detection
method based on dominator trees [10]. Dominator trees provide for an abstraction
of process control flow and therefore encode the dominance relation of flow graphs.
A node n in a flow graph is said to dominate another node m, iff n comes before
m on every path from the flow graph’s start node to m. Note that this relation
can be efficiently computed for flow graphs using data flow analysis, also for
workflow graphs [4,8]. Each node and its immediate, i.e., closest dominating node
then results in an edge in the dominator tree. The same dominator tree represents
both the example models and is shown on the right-hand side of Fig. 1. As can be
seen, the dominator tree comprises guaranteed happens-before relations between
the models’ activities, while abstracting from the process models’ structure.

In order to allow for an efficient comparison of process models, dominator
trees are encoded into sets of integer sequences. In this way, standard metrics, e.g.,
Hamming or edit distance, can be used for their comparison. If the thus computed
difference between two process models does not exceed a certain threshold value,
the models are considered to be a model clone. For the encoding, each path of a
dominator tree, starting at its root node and ending at a leaf node, is mapped
to a sequence of integers, yielding a set of integer sequences. For the dominator
tree in Fig. 1, this would mean to encode the five paths [A, B, D], [A, B, E, F],
[A, B, H], [A, B, G], and [A, C]. As the two example process models share the
same dominator tree shown in Fig. 1, they are identified as model clone. Also

26 Thomas S. Heinze et al.

considering modifications like adding, modifying, or removing a single or a small
number of nodes in one of the models, as in case of homologous development,
would only slightly affect their encoding and the result of their comparison.

Control flow is an integral part of a business process model, but its other
aspects have to be considered as well. While the encoding of dominators trees
introduced above does not cover the analysis of node labels by itself, stemming,
bag-of-words, word embeddings, and other related methods [6,11] can be inte-
grated into our approach. In this way, the encoding becomes more permissive in
the presence of differing node labels, as is common in business process models.
Furthermore, the pre-processing of node labels by means of Static Single Assign-
ment Form [4,8] helps in including aspects of process data in the encoding [4].
The thorough study of an optimal encoding is subject to our future work.

3 Related Work

Business process model similarity estimation and matching has been a frequent
topic in research. Due to space constraints, we refer to the survey in [11] for a
comprehensive overview. Respective approaches can be categorized into: syntacti-
cal, structural, behavioral methods and approaches based upon human judgement.
Syntactical methods compare process models based on the therein used labels,
e.g., as in [6]. Structural methods use process models as graphs for estimating
their similarity, e.g., calculating the graph edit distance or isomorphisms [1].
Behavioral methods instead use process execution traces or logs to compare
process models, e.g., measuring the longest common subseqence [3]. Note that
our proposed method aligns between both, as it does not rely on the actual
process modeling structure. In this way, we avoid the usually costly analysis of
process behavior but are still able to abstract from modeling styles and practices.
The comparison with behavioral methods and analysis of the tradeoff between
precision and scalability to large process model repositories is subject to future
work. In a way, our method reminds of causal footprints [2] or behavioral profiles
and footprints [7,13]. Remember that dominator trees encode the guaranteed
happens-before relation of activities. Behavioral profiles and footprints are based
on execution traces and the direct or eventual successor relation of activities
therein, respectively. Measuring similarity is then conducted using the relations’
Jaccard index for two process models, or an execution log and a process model.
In general, the major part of research on clone detection addresses source code.
However, some approaches have been considering clone detection for model-based
languages besides business process modeling languages, e.g., UML [12].

4 Next Steps

We are interested in implementing the proposed method in a system for detecting
semantic BPMN model clones, e.g., starting with the existing control flow analyses
available in mojo [9]. The implementation would allow us for experimenting with
various optimizations and parameters, including differing metrics and encodings.

Detecting Semantic Business Process Model Clones 27

Furthermore, the thorough evaluation and comparison with state-of-the-art ap-
proaches to process model clone detection and similarity estimation, in particular
the trace-based approaches mentioned above, is another item for future work.
Such an evaluation requires though a dataset with ground truth, i.e., known
process model clones. As such datasets are unfortunately scarce, we plan to resort
to human judges for generating missing labels in an existing dataset, using for
example the set of mined process models in [5]. Alternatively, applying small
mutations on seed models can be used to generate a dataset, similar to [7].

References

1. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

2. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business
Process Models. In: CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer (2008)

3. Gerke, K., Cardoso, J.S., Claus, A.: Measuring the Compliance of Processes with
Reference Models. In: OTM 2009. LNCS, vol. 5870, pp. 76–93. Springer (2009)

4. Heinze, T.S., Amme, W., Moser, S.: Static analysis and process model transformation
for an advanced business process to Petri net mapping. Softw. Pract. Exp. 48(1),
161–195 (2018)

5. Heinze, T.S., Stefanko, V., Amme, W.: Mining BPMN Processes on GitHub for
Tool Validation and Development. In: BPMDS/EMMSAD@CAiSE 2020. LNBIP,
vol. 387, pp. 193–208. Springer (2020)

6. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing Recall
of Process Model Matching by Improved Activity Label Matching. In: BPM 2013.
LNCS, vol. 8094, pp. 211–218. Springer (2013)

7. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric. In:
BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer (2011)

8. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent Static Single Assignment Form and
Constant Propagation for Explicitly Parallel Programs. In: LCPC 1997. LNCS,
vol. 1366, pp. 114–130. Springer (1997)

9. Prinz, T.M., Spieß, N., Amme, W.: A First Step towards a Compiler for Business
Processes. In: CC 2014. LNCS, vol. 8409, pp. 238–243. Springer (2014)

10. Schäfer, A., Amme, W., Heinze, T.S.: Detection of Similar Functions Through the
Use of Dominator Information. In: ACSOS 2020 Comp. pp. 206–211. IEEE (2020)

11. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of Business
Process Models – A State-of-the-Art Analysis. ACM Comput. Surv. 50(4), 52:1–
52:33 (2017)

12. Störrle, H.: Towards Clone Detection in UML Domain Models. Softw. Syst. Model.
12(2), 307–329 (2013)

13. Weidlich, M., van der Werf, J.M.: On Profiles and Footprints – Relational Semantics
for Petri Nets. In: Petri Nets 2012. LNCS, vol. 7347, pp. 148–167. Springer (2012)

14. Wu, M., Wang, P., Yin, K., Cheng, H., Xu, Y., Roy, C.K.: LVMapper: A Large-
Variance Clone Detector Using Sequencing Alignment Approach. IEEE Access 8,
27986–27997 (2020)

28 Thomas S. Heinze et al.

A Dashboard-based Approach for Monitoring
Object-Aware Processes

Marius Breitmayer, Lisa Arnold and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{marius.breitmayer,lisa.arnold,manfred.reichert}@uni-ulm.de

Abstract. Data (e.g., event logs) gathered during the execution of busi-
ness processes enable valuable insights into actual process performance.
To leverage this knowledge, these data should be analyzed and inter-
preted in the context of the respective processes. Corresponding analy-
ses allow for a comprehensive process monitoring as well as the discovery
of weaknesses and potential process improvements. This also applies to
object-aware processes, where data drives process execution and, thus,
is treated as first-class citizen. This paper introduces a dashboard with
advanced monitoring functions for object-aware processes.

Keywords: object-aware processes, process monitoring, dashboard

1 Introduction

Process monitoring leverages the data created during the execution of business
processes in order to gain insights into actual process performance and to ensure
process conformance with regulations, policies, and business rules [12]. This in-
formation, in turn, can then be used to monitor, analyze and improve processes
[8]. Despite existing approaches for monitoring activity-centric processes (e.g.,
[5]), adequate monitoring support for data-centric paradigms to business process
management (BPM) [16], e.g., artifact-centric processes [7], object-aware pro-
cesses [10], and case handling [2], is still lacking. As opposed to activity-centric
processes, in object-aware process management, large process structures involv-
ing multiple concurrently executed and interacting object lifecycle processes,
emerge during runtime [15,4]. The monitoring of such dynamically evolving pro-
cess structures constitutes a particular challenge not sufficiently addressed by
contemporary approaches [14]. As data is treated as first-class citizen in object-
aware process management, however, the monitoring of data-centric processes
yields great potential for more advanced analyses and better comprehensibility
of processes in general due to the tight integration of process and data.

To set a background, a short introduction of object-aware process manage-
ment is provided. PHILharmonicFlows, our approach to data-centric BPM [10],
introduces the concepts of objects, object behavior, and object interaction. Each
business object of a real-world business process is represented as one such object.
The latter comprises data, represented in terms of attributes, and a state-based

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

process model describing object behavior in terms of an object lifecycle model.
In a practical application of the PHILharmonicFlows system, which resulted in a
data- and process-aware e-learning system, examples of business objects include
Exercise, Submission, and Lecture [3]. At runtime, when necessary data (i.e., ob-
ject attributes), such as Points or Feedback, become available, this enables the
transition between the states of a lifecycle. Finally, interactions between object
lifecycles are managed by coordination processes [13].

Section 2 discusses related work. Section 3 sketches three approaches for cal-
culating process progress, followed by a description of the monitoring dashboard
in Section 4. Finally, Section 5 provides a summary and outlook.

2 Related Work

In the BPM lifecycle, process monitoring is a key component for analyzing
and improving processes [8,17]. A wide range of approaches and tools exist for
activity-centric processes, especially in the field of process mining [1]. To iden-
tify problems of a process, conformance checking verifies whether a process is
executed as intended by replaying or aligning an event log with the correspond-
ing process model [6]. However, there only exist few approaches for monitoring
data-centric processes, which focus on artifact-based processes [11]. Process mon-
itoring and conformance checking for activity-centric processes mainly focus on
the identification of bottlenecks, deviations between event log and process model,
and the prediction of the next activities [9]. By contrast, our work deals with the
monitoring of object-aware processes and the large process structures emerging
in this context during runtime.

3 Towards Progress Calculation

To understand the calculation of progress metrics displayed in the dashboard (c.f.
Fig. 1), this section describes the three approaches implemented for calculating
the progress of object lifecycle instances. Though none of the described calcula-
tions covers all aspects, their combination (e.g., individually weighted average)
constitutes a good approximation and is therefore supported by the dashboard.

Approach 1 (Lifecycles). This approach divides the number of completed
lifecycle steps by the number of total lifecycle steps for each object instance. Note
that this calculation is non-trivial as different steps may be executed depending
on data (and routing decisions). Therefore, the number of completed steps may
vary depending on the path taken through the lifecycle. To reconstruct the latter,
for each lifecycle step it is checked whether a value is assigned in the event log.
This allows determining the actual number of steps executed for each object
instance, which then may be divided by the number of remaining steps.

Approach 2 (Relations). Using the hierarchies specified in the data model,
the progress of an object instance can be calculated as the average progress of
its lower-level instances. This approximates how constraints between states of
object instances influence the progress of the overall object-aware process.

30 Marius Breitmayer et al.

Approach 3 (Temporal Distance). This approach calculates the temporal
distance between object instantiation and a certain point in time in the event
log. To calculate the progress, this distance may then be divided by the average
duration of all completed object instances of the same type.

4 Monitoring Dashboard

The monitoring of an object-aware process needs to consider the information
contained in its data model (e.g., objects, attributes, relations, hierarchies), its
object lifecycles (e.g., steps and states), and its coordination process [10] in
conjunction with the data recorded during process execution (e.g., event logs).
We created a monitoring dashboard that allows us to display various aspects of
an object-aware process (see Fig. 1). As input, this dashboard takes an object-
aware process (i.e., the data model, lifecycles and coordination process) and
the event log created during process enactment. Note that event logs of object-
aware processes differ from the ones of activity-centric processes. While the latter
consists of case-related activity events enriched with additional information [1],
a data-centric event log contains information about object instances (e.g., ids,
object types, attributes and their values), lifecycle processes (e.g., steps, states,
state changes), and object interactions. Using this information, the monitoring
dashboard can provide an overview of the overall object-aware process (see Fig.
1), as well as drill-down and roll-up functions for inspecting selected aspects.
The dashboard was evaluated for two processes with corresponding event logs.

Fig. 1. PHILharmonicFlows Monitoring Dashboard

A Dashboard-based Approach for Monitoring Object-Aware Processes 31

1. The tree navigation element lists the various object types (e.g., Lecture,
Exercise, Submission) derived from the data model, together with the corre-
sponding instances (e.g., “Databases” and “Information Systems” as instances
of object Lecture) recorded in the event log. Additionally, the tree navigation
displays lower-level instances of any object instance that can be derived from
the hierarchical structuring of the objects in the data model (e.g., “Exercise1”
as lower-level instance of the “Database” lecture).

2. The sunburst chart provides an overview of selected objects, together with
their instances and corresponding lower-level instances. Each layer contains
the object instances belonging to the same hierarchical level (e.g., all ex-
ercises of a lecture series). However, when the number of object instances
grows, the ratio of each individual instance shrinks. To tackle this issue, we
implemented “drill-down” and “roll-up” functions. This allows inspecting in-
dividual process aspects (e.g., object instances) instead of the entire process.
Additionally, color coding of elements enables fast bottleneck identification.

3. The bar chart provides a quick and easy method to either compare the
progress of similar object instances (see Fig. 1) or the average progress of
instances of the same type. We added “drill-down” and “roll-up” functions.

4. The time slider allows displaying the state of the object-aware process at any
point in time based on recorded event logs. If a point in time other than the
most recent one is selected, the status of displayed instances is reconstructed
through partial event log replay. As a result, all dashboard elements display
the state of the process at the selected point in time. This allows replaying
the process as well as detecting former issues that have been resolved.

5. The list of object instances displays additional information of the object in-
stances being of interest. The table may be sorted according to any criterion.

6. The anomalies table lists object instances that are likely to be outliers. To
identify these outliers, the dashboard allows for the comparison with a rel-
ative or absolute threshold. For relative comparison, this is accomplished
using the following formula:

(1 + threshold(%)
100) < InstanceV alue

ObjectAverage or InstanceV alue
ObjectAverage < (1− threshold(%)

100)
For absolute comparison, the difference between an object instance and the
object median is calculated and compared with the absolute threshold (e.g.,
3 days). To enable a more sophisticated outlier detection, the dashboard is
able to combine both methods using AND/OR operations.

5 Conclusion and Outlook

This paper presents a monitoring dashboard for object-aware processes which
enables advanced monitoring functions. It combines knowledge from the object-
aware process model with information about the execution to visualize the states
of all object instances at any moment during the process execution. This allows
detecting bottlenecks and outliers. Additionally, the dashboard was tested with
two real-world processes and corresponding event logs. In future work, we will
improve outlier detection based on more sophisticated algorithms and incorpo-
rate different user perspectives (i.e., personalized monitoring views).

32 Marius Breitmayer et al.

Acknowledgments This work is part of the ZAFH Intralogistik, funded by the
European Regional Development Fund and the Ministry of Science, Research and
Arts of Baden-Württemberg, Germany (F.No. 32-7545.24-17/3/1)

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016)
2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm

for business process support. DKE 53(2), 129–162 (2005)
3. Andrews, K., Steinau, S., Reichert, M.: Engineering a highly scalable object-

aware process management engine using distributed microservices. In: Int’l Conf
on CoopIS’18. pp. 80–97 (2018)

4. Andrews, K., Steinau, S., Reichert, M.: Enabling runtime flexibility in data-centric
and data-driven process execution engines. Information Systems p. 101447 (2019)

5. Bülow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong,
T.Y., Weske, M.: Monitoring of business processes with complex event processing.
In: Business Process Management Workshops. Springer (2014)

6. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking.
Springer (2018)

7. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

8. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, 2nd edn. (2018)

9. Jorbina, K., et al: Nirdizati: A web-based tool for predictive process monitoring. In:
BPM Demo Track and BPM Dissertation Award (CEUR Workshop Proceedings,
Volume 1920), pp. 1–5 (2017)

10. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J of Soft Maint & Evo 23(4), 205–244 (2011)

11. Meroni, G.: Artifact-driven Business Process Monitoring. Ph.D. thesis, Politecnico
di Milano Milan Italy (2018)

12. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg (2012)

13. Steinau, S., Andrews, K., Reichert, M.: Modeling process interactions with coor-
dination processes. In: CoopIS’18. pp. 21–39. LNCS, Springer (2018)

14. Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In: CAiSE
2018. pp. 53–67. No. 10816 in LNCS, Springer (2018)

15. Steinau, S., Andrews, K., Reichert, M.: Executing lifecycle processes in object-
aware process management. In: Data-Driven Process Discovery and Analysis. pp.
25–44. Springer (2019)

16. Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M., Reichert, M.:
DALEC: A framework for the systematic evaluation of data-centric approaches
to process management software. Softw & Sys Modeling 18(4), 2679–2716 (2019)

17. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2019)

A Dashboard-based Approach for Monitoring Object-Aware Processes 33

Custom-MADE – Leveraging Agile
Rationale Management by Employing

Domain-Specific Languages

Mathias Schubanz

Brandenburg University of Technology,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

M.Schubanz@b-tu.de

Abstract. Managing rationale in software development projects can be
a cumbersome task with a potentially low return on investment. Espe-
cially in the agile context, documentation is therefore very unpopular.
Research has not yet properly addressed an agile documentation work-
flow. In this paper, the author presents an integrated approach to agile
rationale management based on a highly-flexible modelling approach us-
ing domain-specific languages. It facilitates the complete documentation
workflow from capture to reuse, partially automates it and offers various
customisation opportunities, making it applicable to agile methods.

Keywords: agile · decision-making · Language Server Protocol · domain-
specific languages · documentation · tool support · rationale management

1 Introduction

Managing rationale can considerably improve comprehension in software devel-
opment. It facilitates change impact analysis as well as requirements traceability
and evolution [35]. Moreover, it improves the understanding of architectural deci-
sions and leads to better decisions [36]. In agile software development (ASD) this
can be particularly important, as empirical work showed that stakeholders in ag-
ile teams perceive less architecture involvement [16]. Furthermore, in ASD docu-
mentation is questioned with particular scepticism. ASD instead promotes work-
ing software while depreciating documentation (cf. Agile Manifest [3]). Despite
the mentioned and other potential benefits (cf. Tang et al. [34]), the structured
and systematic handling of decisions is only applied seldom in practise [2,11].
Even in ASD teaching, it is only dealt with very selectively [22].

As part of an ongoing research project [32] with the focus adapted to ASD,
the author developed Custom-MAnangement of DEcision (Custom-MADE), an
integrated process-centric approach to rationale management. Based on domain-
specific languages (DSL) it integrates a highly-flexible modelling approach en-
abling its users to tailor it to individual or enterprise-wide needs and documen-
tation standards. Another feature is its minimal-invasive and generic approach
offering to combine it with existing workflows. All these customization opportu-
nities are vital for use in individually tailored processes in ASD.

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

2 Mathias Schubanz

The remainder of the paper starts with a presentation of related work (Sec-
tion 2). Section 3 presents a simplified rationale management workflow, while
Section 4 elaborates on how Custom-MADE enhances it. Subsequently, Section 5
introduces the model architecture and Section 6 the chosen tool architecture. Fi-
nally, Section 7 concludes the paper and provides an outlook on future research.

2 Related Work

Approaches to direct process integration of rationale management in ASD are
sparse, if at all. Rather, there are many tool-based approaches for rationale
management in ASD. In the field of agile requirements gathering, for instance,
Lee et al. [24] developed Echo, an approach connecting requirements and related
design decisions. Around the same time Sauer [30] presented an approach for
automating the capture of rationale in ASD. It aims to reduce costs by link-
ing historical data and prototype definitions to an event-based rationale model.
More recently, Hadar et al. [15] introduced an approach to document an archi-
tecture in the elevator speech concept. Their tool helps architects in organizing
relevant information while creating design and architecture blueprints, thus re-
ducing documentation effort. Also recently Voigt et al. [37] presented sprintDoc,
a tool-based concept based on DokuWiki [13]. It integrates the documentation
of artefacts into the agile process and thus traces changes in documents along
with changes in issues.

There are also a lot of contributions around rationale modelling. These con-
tributions often include tools that support rationale capture or sometimes even
the decision-making process, as e. g., Miksovic and Zimmerman [28]. Some ap-
proaches even start with requirements analysis, such as RADAR [12]. A consid-
erable share of the model-based contributions stems from research on software
architecture documentation, less from the field of agile documentation. Since
Custom-MADE aims less at architecture-bound documentation and more at in-
tegration into lightweight agile processes, please refer to Tang et al. [33] for a
comprehensive overview of other approaches to modelling software architecture
decisions as well as suitable tool support.

When considering the modeling approach from a more general perspective,
one of the approaches that is most similar to Custom-MADE is Frag [38]. How-
ever, Zdun focuses more on DSL-based designs rather than using DSLs to get
maximum flexibility for the documentation models.

Further work tries to leverage the opportunity of capturing rationale exactly
where and when they are made to mitigate a substantial barrier to rationale cap-
ture (cf. [11]). For instance, DesignMinders [8] complements whiteboard systems
so that rationale are directly digitised and browseable. Other approaches directly
integrate with the IDE, as implemented by SEURAT [10] and DecDoc [17]. Con-
Dec [21] even goes one step further by additionally integrating with JIRA [25]
and Slack [26].

Other related contributions ignore formal and process aspects of rationale
documentation entirely. They focus on retrospectively extracting rationale from
existing documents by, e. g., integrating machine learning techniques (cf. Alkadi
et al. [1], Bhat et al. [6], or Rogers et al. [29]).

Custom-MADE 35

Custom-MADE – Leveraging Rationale Management 3

3 Rationale Management Workflow

As presented in the related work (cf. Section 2), many of the approaches to date
focus on either modelling, the activity of capturing, or persisting and provid-
ing design rationales to developers. However, only a few approaches focus on a
holistic workflow and a possible process integration with it. In this chapter, the
author presents a simplified rationale management workflow that serves as the
basis for presenting the tool-driven approach later on (cf. Figure 1). As of now,
Custom-MADE deliberately ignores the reasoning and decision-making process
and begins with the rationale capture.

Rationale
Capture

Rationale
Review

Rationale
Processing

Rationale
Reuse

Fig. 1. Rationale management workflow.

Initially, (I) rationale that are considered sufficiently important will be doc-
umented. As a second step, (II) the rationale are reviewed at a given time (e.g.
in retrospective, as in [31]). Following the review and potential modifications,
(III) the documented rationale are processed and archived for later use. The last
activity (IV) constitutes the reuse of the recorded information. If it is necessary
to modify already documented rationale, the workflow can be reiterated from
the review.

4 Enhanced Rationale Management Workflow

The aim of Custom-MADE is to enable an individual, customisable, flexible and
semi-automated rationale management workflow. Custom-MADE starts even
before the actual workflow (cf. Figure 2).

Rationale
Capture

Rationale
Review

Rationale
Processing

Rationale
Reuse

Selection / Definition
of Documentation Model

Rationale Management Workflow

Class

+ field

Class

+ field

Class

+ field

Class

+ field

Fig. 2. Custom-MADE – Enhanced rationale management workflow.

With domain experts, developers should either define a particular documen-
tation model or select one from a set of predefined models. Building on the

36 Mathias Schubanz

4 Mathias Schubanz

underlying DSL technology, Custom-MADE users can define their particular
models and integrate them seamlessly into the toolchain. In the following, the
author describes modifications to the workflow and how the tool facilitates the
rationale management workflow:

Rationale Capture /Rationale Review

To support software engineers during the Rationale Capture, Custom-MADE
provides an easy and intuitive web-based editor facilitating the previously de-
fined documentation model (cf. Figure 4). Based on the Xtext framework [14],
this editor offers high levels of flexibility and customisability. It provides a full
language infrastructure to the user, i. e., among others, auto-completion, se-
mantic colouring, error checking, quick-fix suggestions. These and many more
are individually adapted to the chosen documentation model (defined as DSL).
This feature set simultaneously facilitates a semi-automated Rationale Review
(cf. Figure 2). By offering documentation guidance in the form of customisable
rationale capture templates and formal and semantic checks, the developers can
fully focus on the content aspects when reviewing the documented design ratio-
nale. Custom-MADE takes over the remaining part of the quality control in a
semi-automated way.

Rationale Processing

Complying with enterprise-wide documentation standards and making documen-
tation available to others can be the most cumbersome documentation task. Here
Custom-MADE steps in and triggers a processing pipeline when saving the doc-
umented rationale. For each documentation model, there are either predefined or
specifically customisable generators that transfer the documented rationale into
the desired and easily accesible formats, as, e. g., Markdown Architecture Deci-
sion Records [23], HTML [4], or PDF [7]. The generators can be easily adapted
using Xtend [5] to make the documentation comply with existing standards and
generate desired formats.

Rationale Reuse

As mentioned already, it is often cumbersome to use documentation that has
already been produced. Accessibility and availability are central obstacles to
effective usage here. Custom-MADE addresses these by storing the raw docu-
mentation and the generated files on the software developers’ central workplace,
the code repository. The user has the opportunity to connect a project to a
git repository (cf. [27]) on a remote git server. If connected, the documentation
will be stored and versioned on a separate, individual development branch. This
storage concept not only enables developers to access older versions but also cen-
tralises the storage location. Thus, it is always clear where the documentation
can be found. The storage concept also enables the direct use of documentation,
e.g. in Markdown format, within the IDE. It also mitigates accessibility barriers
by enabling additional services, such as full-text search usually offered by IDEs.
Corresponding search functions for the web interface are also being developed.

Custom-MADE 37

Custom-MADE – Leveraging Rationale Management 5

5 Model Architecture

For the implementation of the desired modelling flexibility, it was necessary to
choose a dynamically configurable approach. Accordingly, the author decided to
implement a model concept with three levels (cf. Figure 3).

New Lang. - A

Metamodel M2

M1

M0

<<instantiate>>

DRL

QOC

<<instantiate>>

IBIS

Class Class

ClassClass

Class Class

ClassClass

New Lang. - B

Class Class

ClassClass

Class Class

ClassClass

Rationale1 -- Lang A

Class Class

ClassClass

Rationale2 -- Lang A

Class Class

ClassClass

Rationale1 -- Lang DRL

Class Class

ClassClass

<<instantiate>>

Fig. 3. Language modelling architecture.

On the top level (cf. level M2, Figure 3), a meta-model is used, which can
implement the common modelling approaches from rationale management (cf.
green packages). This meta-model is now interpreted as a DSL grammar. In
this way, a language server can be generated that provides a complete language
infrastructure for the definition at the model level (cf. level M1, Figure 3). This
way, users can create their documentation model (cf. orange / blue package on the
M1 level) with the Monaco Editor (cf. Figure 4). Once this is complete, the model
itself is interpreted as a DSL grammar to generate the language infrastructure for
the rationale documentation (cf. level M0). Starting from this point, developers
can now capture their rationale and start the rationale management workflow.

Fig. 4. Screenshot of the integrated editor showing semantic and syntactic hints.

38 Mathias Schubanz

6 Mathias Schubanz

6 Custom-MADE Tool Architecture

The author briefly presents the tool architecture based on the overview illustra-
tion in Figure 5. The left-hand side shows the part of Custom-MADE that is
visible to the user. Based on a ReactJS web application, a spring-backend and
a special implementation of the Monaco Editor, all functionalities described in
Section 4 are accessible to the user. Particular attention is to be paid to the
Monaco Editor, as its support of the Language Server Protocol (LSP) (cf. [9])
enables the flexibility in modelling that is one of the core features of the Custom-
MADE approach. With the help of this web interface, developers can initially
select or individually define their documentation model. Using Xtext, an indi-
vidual language server is generated, with which the Monaco Editor supports the
complete language infrastructure. The server and the editor communicate via
JSON-RPC [20]. The user can now start to record design rationales based on
the defined documentation model. These are validated instantly in the editor
and in the processing step (cf. centre of Figure 5). If required, test cases can
also be implemented for the model. Subsequently, with the generators’ help the
defined document formats are created and stored in the project’s code repository
(cf. right side of Figure 5).

Web Interface

Editing Capabilities Generated
Results

Language
Server
Protocol

Validation & Generation

Metamodel

Metamodel
Rationale Capture &

Rationale Review Rationale Processing
Rationale

Reuse

MonacoReactJS

Fig. 5. Abstract tool architecture.

7 Conclusion and Outlook

In this paper, the author presented a process-centric approach for the partial au-
tomation of rationale documentation, called Custom-MADE. Special features in-
clude its model-flexibility and customisability at various points in the toolchain.
It can be easily applied to existing workflows and configured with documentation
models already in use.

Future work includes, but is not limited to, the implementation of profound
traceability down to the ticket level and automatically generated review requests
becoming necessary due to changes that affect other rationale documentation.

Acknowledgments
Special gratitude goes to Jost-V. Schulz and Sebastian Brüggemann for contri-
butions to Custom-MADE and to Claus Lewerentz for his valuable feedback.

Custom-MADE 39

Custom-MADE – Leveraging Rationale Management 7

References

1. Alkadhi, R., Laţa, T., Guzman, E., Bruegge, B.: Rationale in Development Chat
Messages: an Exploratory Study. In: Proceedings of the 14th International Confer-
ence on Mining Software Repositories. pp. 436–446. IEEE Press (2017)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edn. (2003)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunnigham, W., Fowler,
M., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Develop-
ment. http://agilemanifesto.org/ (February 2001), http://agilemanifesto.org/

4. Berners-Lee, T., Connolly, D.: Hypertext markup language-2.0 (1995)

5. Bettini, L.: Implementing Domain-Specific Languages With Xtext and Xtend.
Packt Publishing Ltd (2016)

6. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic Ex-
traction of Design Decisions From Issue Management Systems: A Machine Learning
Based Approach. In: European Conference on Software Architecture. pp. 138–154.
Springer (2017)

7. Bienz, T., Cohn, R., Adobe Systems (Mountain View, C.: Portable document for-
mat reference manual. Citeseer (1993)

8. Bortis, G.: Informal Software Design Knowledge Reuse. In: 2010 ACM/IEEE 32nd
International Conference on Software Engineering. vol. 2, pp. 385–388. IEEE (2010)

9. Bünder, H.: Decoupling Language and Editor – The Impact of the Language Server
Protocol on Textual Domain-Specific Languages. In: Proceedings of the 7th In-
ternational Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2019). pp. 131–142 (2019)

10. Burge, J., Brown, D.: SEURAT: Integrated Rationale Management. In: 2008
ACM/IEEE 30th International Conference on Software Engineering. pp. 835–838.
IEEE (2008)

11. Burge, J.E., Brown, D.C.: Software Engineering Using RATionale. Journal of Sys-
tems and Software 81(3), 395–413 (2008)

12. Busari, S.A., Letier, E.: RADAR: A Lightweight Tool for Requirements and Ar-
chitecture Decision Analysis. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). pp. 552–562. IEEE (2017)

13. DokuWiki: DokuWiki – It’s Better When its Simple (Jul 2004),
https://www.dokuwiki.org/

14. Eysholdt, M., Behrens, H.: Xtext: Implement Your Language Faster Than the
Quick and Dirty Way. In: Proceedings of the ACM international conference com-
panion on Object oriented programming systems languages and applications com-
panion. pp. 307–309 (2010)

15. Hadar, I., Sherman, S., Hadar, E., Harrison, J.J.: Less is More: Architecture Docu-
mentation for Agile Development. In: 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). pp. 121–124. IEEE (2013)

16. Heijenk, F., van den Berg, M., Leopold, H., van Vliet, H., Slot, R.: Empirical In-
sights Into the Evolving Role of Architects in Decision-Making in an Agile Context.
In: European Conference on Software Architecture. pp. 247–264. Springer (2018)

17. Hesse, T.M., Kuehlwein, A., Roehm, T.: DecDoc: A Tool for Documenting Design
Decisions Collaboratively and Incrementally. In: 1st International Workshop on
Decision Making in Software ARCHitecture (MARCH). pp. 30–37. IEEE (2016)

40 Mathias Schubanz

8 Mathias Schubanz

18. Jansen, A., Van Der Ven, J., Avgeriou, P., Hammer, D.K.: Tool Support For
Architectural Decisions. In: Software Architecture, 2007. WICSA’07. The Working
IEEE/IFIP Conference on. pp. 4–4. Ieee (2007)

19. Jansen, A., Bosch, J.: Software Architecture as a set of Architectural Design De-
cisions. In: Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP
Conference on. pp. 109–120. IEEE (2005)

20. JSON-RPC Working Group, .: JSON-RPC 2.0 Specification (2013)
21. Kleebaum, A., Johanssen, J.O., Paech, B., Bruegge, B.: Sharing and Exploiting

Requirement Decisions. In: In Proceedings: Fachgruppentreffen Requirements En-
gineering (FGRE’19) (2019)

22. Kleebaum, A., Johanssen, J.O., Paech, B., Bruegge, B.: Teaching Rationale Man-
agement in Agile Project Courses. In: Tagungsband des 16. Workshops ”Software
Engineering im Unterricht der Hochschulen” (2019)

23. Kopp, O., Armbruster, A., Zimmermann, O.: Markdown Architectural Decision
Records: Format and Tool Support. In: ZEUS. pp. 55–62 (2018)

24. Lee, C., Guadagno, L., Jia, X.: An Agile Approach to Capturing Requirements and
Traceability. In: Proceedings of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE). vol. 20 (2003)

25. Li, P.: Jira 7 Essentials. Packt Publishing Ltd (2016)
26. Lin, B., Zagalsky, A., Storey, M.A., Serebrenik, A.: Why developers are slack-

ing off: Understanding how software teams use slack. In: Proceedings of the 19th
ACM Conference on Computer Supported Cooperative Work and Social Comput-
ing Companion. pp. 333–336 (2016)

27. Loeliger, J.: Version control with Git. O’Reilly Series, O’Reilly (2009), http://bo
oks.google.de/books?id=e9FsGUHjR5sC

28. Miksovic, C., Zimmermann, O.: Architecturally Significant Requirements, Refer-
ence Architecture, and Metamodel for Knowledge Management in Information
Technology Services. In: 9th Working IEEE/IFIP Conference on Software Archi-
tecture. pp. 270–279. IEEE (2011)

29. Rogers, B., Qiao, Y., Gung, J., Mathur, T., Burge, J.E.: Using Text Mining Tech-
niques to Extract Rationale From Existing Documentation. In: Design Computing
and Cognition’14, pp. 457–474. Springer (2014)

30. Sauer, T.: Using Design Rationales for Agile Documentation. In: Proceedings of
the 12th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET ICE). pp. 326–331. IEEE (2003)

31. Schubanz, M., Lewerentz, C.: What Matters to Students – A Rationale Man-
agement Case Studyin Agile Software Development. In: Tagungsband des 17.
Workshops ”Software Engineering im Unterricht der Hochschulen”, Innsbruck,
Österreich (2020)

32. Schubanz, M.: Design Rationale Capture in Software Architecture: What has to
be Captured? In: Proceedings of the 19th International Doctoral Symposium on
Components and Architecture. pp. 31–36. ACM (2014)

33. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A Comparative Study
of Architecture Knowledge Management Tools. Journal of Systems and Software
83(3), 352–370 (2010)

34. Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Ra-
tionale. Journal of Systems and Software 79(12), 1792–1804 (2006)

35. Thurimella, A., Schubanz, M., Pleuss, A., Botterweck, G.: Guidelines for
Managing Requirements Rationales. Software, IEEE 34(1), 82 – 90 (2017).
https://doi.org/10.1109/MS.2015.157

Custom-MADE 41

Custom-MADE – Leveraging Rationale Management 9

36. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of Architectural Decisions – A]
Survey With Professional Architects. In: European Conference on Software Archi-
tecture. pp. 192–199. Springer (2013)

37. Voigt, S., Hüttemann, D., Gohr, A.: SprintDoc: Concept for an Agile Documenta-
tion Tool. In: 11th Iberian Conference on Information Systems and Technologies
(CISTI). pp. 1–6. IEEE (2016)

38. Zdun, U.: A DSL Toolkit for Deferring Architectural Decisions in DSL-Based Soft-
ware Design. Information and Software Technology 52(7), 733–748 (2010)

42 Mathias Schubanz

ElogQP: An Event log Quality Pointer

Tobias Ziolkowski1, Lennart Brandt2, Agnes Koschmider1

1 Process Analytics Group,

Computer Science Department, Kiel University, Germany
{tzi|ak}@informatik.uni-kiel.de

2 stu113969@mail.uni-kiel.de

Abstract. This paper presents ElogQP, a tool to detect data quality violations in

an event log. Data quality issues significantly impact the process discovery result.

Thus, ElogQP represents an essential step towards improved process discovery.

Keywords: event log, process mining, data cleaning, imperfection patterns.

1 Introduction

Event log files are used as input to any process mining algorithm aiming to discover an as-is

process model or to identify bottlenecks. Although recently process mining has gained an

impressive uptake, still, data quality violations often hamper the direct applicability of process

mining techniques on an event log. There are several reasons for data quality violations like those

that the recorded event data is not saved in the correct order, data entries are missing (e.g.

timestamps or case ID) or are not recorded correctly (e.g. incomplete activity names). These

quality violations lead to inappropriate event logs and finally significantly impact the process

discovery result. To counteract data quality issues in process mining several approaches exist [1,

2, 3] like to define maturity levels for data quality [1], to use a framework of timestamp

imperfections [2] or a framework for event log quality [3]. Better understanding of how data

quality issues affect the event log quality led to the definition of so-called event log imperfection

patterns [4].

To detect data quality violations this paper presents the Event log Quality Pointer (EloqQP) tool.

The tool allows to detect event log imperfection patterns and to classify the data violations

according to data quality levels as specified in the process mining manifesto [5]. Beside this, a

comparison between two event logs with respect to data quality violations is supported. Thus,

ElogQP detects missing start or end activities and activities with wrong order. Fig. 1 shows how

ElogQP works when two event logs are used as input. The event log on the left-hand side is

(more) complete, while on the right-hand side one timestamp and one activity are missing. When

parsing both event logs, ElogQP returns data types that have been identified as data quality

violations with a descriptive comment to understand the violation (see “Output of ElogQP”).

The paper is structured as follows. Section 2 gives an overview of ElogQP. It describes the

components and the functionality of the tool. Section 3 concludes the paper.

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

2

Fig. 1. ElogQP detects missing timestamp and missing activity.

2 Detection of Data Quality Violations

This section summarizes event log imperfection patterns and data quality levels of an event log.

Section 2.2. presents how ElogQP refers to both.

2.1 Event Log Imperfection Patterns and Data Quality Levels

Eleven event log imperfection patterns for process mining have been defined, which are form-
based event capture, inadvertent time travel, scattered event, elusive case, scattered case,

collateral events, polluted label, distorted label, synonymous labels and homonymous labels.
These patterns relate to data quality issues in timestamps, case IDs, activities and activity labels

like missing or incorrect activities, missing case IDs and discrepancies in the activity names.

According to the process mining manifesto [5] five quality levels exist for event logs. Quality

level 1 means that the recorded events do not exist in reality and thus the event log has artificial

events. Often these are manually created event logs. Quality level 2 refers to event logs that are

recorded without a systematic approach. This returns log data that is incorrect or incomplete.

Event logs with a quality level 3 are reliable in a way that the recorded event data is likely to

correspond with reality. Quality level 4 means that event logs are complete in terms of “correct”.

Quality level 5 fulfills the properties of quality level 4. Additionally, the recorded events have

clear semantics and are well defined. ElogQP evaluates quality violations according to quality

level 1 to 4.

2.2 Tool Overview

Fig. 3 shows the functionality of the ElogQP tool. The tool has been implemented in R and in

essence, the tool represents a script with the following sequential steps:

• Step 1: The event log is imported in XES format into the ElogQP environment.

• Step 2 (a): The user selects the event log quality attributes to be analyzed.

44 Ziolkowski et al.

 3

• Step 2 (b): An additional event log or Petri net can be used as input. The comparison between

the Petri net and an event log additionally allows detecting activity order incompliance. With

the additional event log missing attributes can be detected.

• Step 3: The event log is analyzed according to the selected attributes.

• Output: If any data quality issue is found, ElogQP sets a pointer, indicates the data quality

level and returns a descriptive comment as shown exemplary in Fig. 1.

Fig. 3. How ElogQP works

Fig. 4 shows the output of ElogQP with a quality level of 2 and the detected data quality

violations. If no data quality violations are found, a quality level of 4 is returned.

Fig. 4. Interface of ElogQP

3 Conclusion and Future Work

This paper presented ElogQP, a tool to inspect event logs in order to find data quality violations

in terms of event log imperfection patterns. In this way, ElogQP is a tool for cleaning event logs

thus improving the process discovery result. In future work we plan to completely implement all

event log imperfection patterns. So far, ElogQP does not detect unanchored events, elusive case

and scattered case. Additionally, we will integrate data quality recommendations that have be

suggested for process activity labels [6] into EloqQP.

ElogQP: An Event log Quality Pointer 45

4

References

1. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In:

SIMPDA 2014: 31-45, vol. 1293 of CEUR Workshop Proceedings

2. Fischer, D. A., Goel, K., Andrews, R., Dun, C. G. J. van, Wynn, M.T., Röglinger, M.:

Enhancing Event Log Quality: Detecting and Quantifying Timestamp Imperfections. BPM

2020, vol. 12168 of LNCS, Springer, pp. 309-326.

3. Kherbouche, O. M., Laga, N., Masse, P.-A. (2016): Towards a better assessment of event

logs quality. SSCI 2016, IEEE, pp. 1-8.

4. Suriadi, S., Andrews, R., Hofstede, A.H.M. ter, Wynn, M.T. (2017): Event log

imperfection patterns for process mining: Towards a systematic approach to cleaning
event logs. Information Systems 64: 132-150: https://doi.org/10.1016/j.is.2016.07.011.

5. van der Aalst, W.M.P. et al. (2012) Process Mining Manifesto. Business Process
Management Workshops (1) 2011: 169-194, https://doi.org/10.1007/978-3-642-28108-

2_19.

6. Koschmider, A., Ullrich, M., Heine, A., Oberweis, A. (2015): Revising the Vocabulary of

Business Process Element Labels. CAiSE 2015, vol. 9097 of LNCS, Springer, pp. 69-8.

46 Ziolkowski et al.

Analysis of Prevalent BPMN Layout Choices on
GitHub

Daniel Lübke1,2[https://orcid.org/0000−0002−1557−8804] and Daniel Wutke3

1 Digital Solution Architecture, Hanover, Germany
2 Leibniz Universität Hannover, Germany

daniel.luebke@digital-solution-architecture.com
https://www.digital-solution-architecture.com

3 dwutke@gmail.com

Abstract. Layout of BPMN diagrams greatly influences their under-
standability. The primary objective of this study is to understand prevalent
choices of modelers for their design of BPMN diagrams. As a research
method we use repository mining to analyze BPMN diagrams we found
on GitHub. We found that BPMN diagrams on GitHub are mostly laid
out from left-to-right and that layout direction choices differ by the mod-
eling tool, process model type (pool vs. no pools) and purpose (toy vs.
non-toy).

Keywords: BPMN Layout · GitHub Mining · Repository Mining

1 Introduction

Layout is one of the influencing factors of understandability of BPMN diagrams [3].
While some empirical research exists on this topic, we want to explore real-world
BPMN processes and analyze the use of layouts – and influencing factors of those;
for example, what layout direction (left-right vs. top-bottom) is dominantly used?

While GitHub has been used in software engineering research [6], its use for
BPMN-related research is only in the beginning [4, 5]. Within this paper we
re-use the dataset by Heinze et al. [4] and present a preliminary analysis of layout
direction choices made for the BPMN diagrams contained therein.

We present a preliminary study, which is structured as follows: First we
present our research design in Sect. 2 before we explain how we mined GitHub
and how we handled the obtained models in Sect. 3. Results of our statistical
analysis are presented in Sect. 4 for which we give our interpretation in Sect. 5.
Finally, we discuss threats to validity in Sect. 6 before we conclude and give
possible future research topics.

2 Research Questions

We want to answer the following research questions related to the layout direction
of BPMN diagrams found on GitHub:

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

2 Daniel Lübke and Daniel Wutke

Fig. 1: The Research Process Followed

RQ1: What layout directions are used and how is their usage dis-
tributed?
Because existing research predicts better understandability for horizontal lay-
outs [2, 3] and existing modeling guidelines mandate them [1, 9], we hypothesize
that left-right diagrams are in the majority.
RQ2: What influence does the modeling tool have on layout direction?
Differences due to modeling tools have been shown for BPEL [8]. We expect that
such differences also exist with BPMN.
RQ3: What influence has project ownership on layout direction?
We expect that (explicit or implicit) modeling guidelines and shared authorship
within a project will lead to uniformity of layouts in any given project. Thus, we
expect that the majority of diagrams within a project will have the same layout.
RQ4: Are "toy"diagrams laid out differently?
Because it has been demonstrated before that models exhibit different properties
based on different purposes [7] (e.g., productive vs. example), we expect toy
diagrams to be smaller and thus to have simpler layouts (horizontal & vertical
only).
RQ5: Are diagrams with pools laid out differently?
Because we expect that laying out pools with more complex layouts is difficult,
we expect pools to have significantly more left-right and top-bottom layouts.
Because we think that pools lead to even more left-right modeling, we expect
that the proportion of this layout is even larger in the diagrams with pools.

In order to answer our research questions we followed the following research
process as illustrated in Fig. 1: We downloaded all files in the list of [4] (not all
of which were still available online) and filtered those files according to the steps
described in Sect. 3.

48 Daniel Lübke and Daniel Wutke

Analysis of Prevalent BPMN Layout Choices on GitHub 3

Later, both authors manually classified the layout of the diagrams and calcu-
lated BPMN metrics with a self-written tool called BPMN Layout Analyzer for
various diagram metrics4. All classification data and metric data was stored in
CSV files on which statistical analysis was performed with R. These steps are
described in Sect. 4.

Fig. 2: Names of Layout Directions

During analysis of layout directions, we labeled BPMN diagrams as shown in
Fig. 2.

3 GitHub Mining and Data Cleansing

We started by downloading the BPMN files from GitHub as they have been
identified by Heinze et al. [4]. This means that we did not mine GitHub per
se but downloaded all models by the list of models identified by Heinze et al.
Although the original list contained 8904 unique BPMN files, only 8467 files
were still available as of 2020-04-06.

For each diagram we generated a PNG file by using BPMN.io’s bpmn-to-
image. This failed for some files due to missing diagram interchange information
or other file format compliance issues. This left us with 5299 unique processes.

In addition BPMN DI layout information or the XML itself were corrupt,
which was ignored by BPMN.io so that after merging in the results from our
BPMN Layout analyzer tool, only 4638 diagrams were left. In order to exclude
“junk diagrams” we removed diagrams from the data set, which did not have
a) at least two activities (neither counting events nor gateways), and b) were
4 Freely available at: https://github.com/dluebke/bpmnlayoutanalyzer/

Analysis of Prevalent BPMN Layout Choices on GitHub 49

4 Daniel Lübke and Daniel Wutke

Table 1: Distribution of Diagram Layouts
Layout % total % non-toy % toy % no pools % pools
left-right 79.52 73.35 86.30 78.21 86.80
multiline-horizontal 0.55 0.67 0.42 0.41 1.32
multiline-vertical 0.10 0.19 0.00 0.12 0.00
other 9.34 10.07 8.54 9.12 10.56
snake-horizontal 1.96 2.88 0.95 2.19 0.66
snake-vertical 0.20 0.29 0.11 0.24 0.00
top-down 8.33 12.56 3.69 9.71 0.66

connected enough. Too low connectedness is found in diagrams that are just used
for placing all BPMN elements without any sequence flows, which was probably
done to make illustrations.

Therefore, we used the following threshold for the number of subgraphs sg:

p =
{

2 × |poolsexpanded| : poolsexpanded > 0
2 : poolsexpanded = 0 (1)

se = |subprocessesexpanded| (2)
ee = 2 × |eventsubprocessexpanded| (3)

ec = |eventsubprocesscollapsed| (4)
sg ≤ p + se + ee + ec (5)

First we define how many subgraphs our process-flow is allowed to have
(equation 1): We want to exclude diagrams in which the main process falls apart
into more than 2 subgraphs. For diagrams with pools we allow 2 subgraphs per
expanded pool. Next, we allow an additional subgraph for an expanded subprocess
(equation 2) because a new process must be contained in it. Event subprocesses
are different because they are not connected to the main process flow. As such,
an additional subgraph must be granted for each event subprocess, if the event
subprocess is collapsed (equation 4). If the event subprocess is expanded two
additional subgraphs are allowed: one for the event subprocess and one for the
process contained in it (equation 3).

This left us with 1992 diagrams for analysis. The analysis of the influence of
project ownership on layout directions includes duplicates and is based on a total
of 7396 processes and 2745 processes after determining metrics and relevance
filtering.

4 Execution & Statistics

For getting process and layout direction counts both authors manually and
independently classified the diagram layout direction. After the first round,
approx. 10% differences between layout direction classifications had been found
which were resolved later in a shared session to reach a unified understanding.

50 Daniel Lübke and Daniel Wutke

Analysis of Prevalent BPMN Layout Choices on GitHub 5

0

25

50

75

100

125

Non−Toy Toy

N
um

be
r

of
 F

lo
w

 N
od

es

(a) Toy vs. No-Toy

0

25

50

75

100

125

No Pools Pools

N
um

be
r

of
 F

lo
w

 N
od

es

(b) Pools vs. No Pools

Fig. 3: Comparison of Flow Node Count for different Diagram Subsets

The total distribution of layout directions is shown in the first data column in
Table 1: The most common layout direction was left-to-right, followed by “other”
layouts, which describe chaotic or too unclean layout directions, and top-down
layouts. More advanced layouts like snake or multi-line layouts are rarely used.

We further classified if a BPMN model is a “toy” model or not by searching
for the key words “test”, “dummy”, and “example” in the complete file name
including path. The distribution of layout directions with regards to toy vs.
non-toy processes are shown in the middle columns of Table 1. Left-right layouts
are used even more frequently in toy diagrams, while top-down layouts are used
more often with non-toy diagrams. We performed a simulated Fisher’s Exact
Test (100,000 rounds) to test whether the distributions of layout directions is
significantly different between the toy and non-toy subsets.

In the following we calculated the number of pools and flow nodes in the
processes with the BPMN Layout Analyzer. The distribution of layout directions
for BPMN diagrams with or without pools are shown in the last two columns in
Table 1. There are more left-right layouts used in conjunction with pools than
without and more top-down layouts are used without pools than with pools. We
again used a simulated Fisher’s Exact Test (100,000 rounds) in order to check
whether the distributions of layout directions is significantly different between
diagrams with or without pools. This test again yields a highly significant p-value
(p = 9.999 9 × 10−6).

In a next step we analyzed the sizes of diagrams measured in number of flow
nodes for toy vs. no toy diagrams (see Fig. 3a) and for diagrams with or without
pools (see Fig. 3b): The mean number of flow nodes of the toy subset is 11.24
and the mean of the non-toy subset is 13.4. A Wilcoxon hypothesis test for a

Analysis of Prevalent BPMN Layout Choices on GitHub 51

6 Daniel Lübke and Daniel Wutke

515 4 79 25 4 125
3
2
2 3
1
1

34 6
26 1
234 2 12 5
53 2 2 1
324 1 2 28 5 39
37 1 2 1 1
1

18 2
10 4
1

103 1 31
1

1
1

105 8 1
13
17 5
78 2 2
4Zeebe Modeler

Yaoqiang BPMN Editor
unknown

Trisotech Workflow Modeler
Signavio

ProM
Process Modeler 6 for Microsoft Visio

jBPM Process Modeler
jBPM Designer

ibo.NET
Flowable
Fix Flow

Enterprise Architect
Eclipse BPMN

Drools Flow
Camunda Modeler (old)

Camunda Modeler (new)
Camunda (unknown)

bpmn.io
BPMN Studio

BPMN Modeler
BonitaSoft

Bizagi
ADONIS

Activiti

le
ft−

rig
ht

m
ul

til
in

e−
ho

riz
on

ta
l

m
ul

til
in

e−
ve

rt
ic

al

ot
he

r

sn
ak

e−
ho

riz
on

ta
l

sn
ak

e−
ve

rt
ic

al

to
p−

do
w

n

Layout

E
xp

or
te

r

0.25

0.50

0.75

1.00
Frac. layouts

Fig. 4: Absolute and Relative Numbers of Processes by Layout and BPMN Editor

difference of means yields a p-value of 0.013 1. The mean number of flow nodes
of the pools subset is 18.08 and 11.34 for diagrams without pools. A Wilcoxon
hypothesis test for a difference of means yields a highly significant p-value of
1.514 × 10−19.

The “BPMN Layout Analyzer” tool also extracts the exporter meta data
(which describe the BPMN tool that wrote that file) from BPMN files. When
no exporter meta data was found, some heuristics, e.g., namespace names, were
used to find a potential BPMN editor. However, there are still some ambiguities,
e.g., Camunda and bpmn.io have different names and we do not know for sure
whether these name changed in different releases or whether the exporter info
was set incorrectly by some other BPMN tool.

We broke down the number of diagrams grouped by layout direction and the
BPMN editor as shown in Fig. 4: Nearly all tools have left-right or other layouts
only with small exceptions. However, both Activiti and Drools also have a large
number of top-down layouts. They are practically the only editors, which have
been used to create top-down layouts, although the majority of diagrams created
with these tools still follow a left-right layout. We performed a simulated Fisher’s
Exact Test (100,000 rounds) to test whether the distribution of layout directions
is independent from the modeling tool used. This test yields a highly significant
p-value of p = 9.999 9 × 10−6.

52 Daniel Lübke and Daniel Wutke

Analysis of Prevalent BPMN Layout Choices on GitHub 7

Lastly, we analyzed the layout direction “cleanliness” for the repositories.
For each repository we calculated the most dominant layout direction for all
diagrams contained therein. Then we calculated the percentage of diagrams
that have this layout direction compared to all diagrams within this repository.
Thus, cleanliness of 100% means that all diagrams in such a repository have the
same layout direction. 85.02% of all repositories had the same layout direction
for all their diagrams. Furthermore, we performed a simulated Fisher’s Exact
Test (100,000 rounds) for the different layout direction distributions against the
repositories, which yields a highly significant p-value of p = 9.999 9 × 10−6.

5 Interpretation

RQ1: What layout directions are used and how is the usage distributed?
We found that the majority (79.52 %) of diagrams are laid out left-right. Although
we do not know what the causal reasons are, the left-right layout is predominantly
used as recommended by theory, existing guidelines, and the BPMN specification.
RQ2: What influence does the modeling tool have on layout direction?
The hypothesis test is highly significant indicating that the modeling tool has an
impact on the diagram layout direction. Interestingly, the Activiti and Drools
modelers are responsible for nearly all top-down layouts. However, it is unclear at
this point, why these tools have been used for top-down layouts, which warrants
further investigation. Many editors have preference for left-right layouts, e.g.,
Camunda and Signavio. Thus, investigating editor preferences and linking them
to actually used layouts can possibly give more insights.
RQ3: What influence does the project ownership has on layout direc-
tion?
Layout directions differ highly significantly depending on the project ownership,
i.e., the owning repository. While we could not dive deep into the data yet, the
differences are highly significant: 85.02% of the repositories followed only one
layout paradigm; others had diagrams with different layouts. This means that
there are forces which will make diagrams in a projects more similar. Future
research can investigate what those forces are (e.g., same developers, guidelines,
. . .).
RQ4: Are "toy"diagrams laid out differently?
Within the dataset toy diagrams have a highly significantly different layout
distribution and are highly significantly smaller with regards to their flow node
count. As such we conclude that “toy” diagrams are not representative for the set
of “non-toy” BPMN diagrams and future research should be concerned whether
to include or exclude those depending on the research questions.
RQ5: Are diagrams with pools laid out differently?
Within the dataset diagrams with pools have a highly significantly different
layout distribution and are highly significantly larger with regards to their flow
node count. As such we conclude that for future research into BPMN models and
diagrams, pool and non-pool diagrams should be researched separately.

Analysis of Prevalent BPMN Layout Choices on GitHub 53

8 Daniel Lübke and Daniel Wutke

Because this is a exploratory study based on existing data without any control,
all these correlations can be due to confounding reasons or because they are
really causal. Further research is required to establish the relationship type.

6 Threats to Validity

Like in software engineering research a general threat is the usage of GitHub data
that might not be representative and generalizable [6]. In fact, we have shown
that further analysis must take care of diagram types. Also, due to manual nature
of the layout classification other researchers might come to other results. We also
experienced problems with the diagram interchange information in the BPMN
files, which can skew the results to more reflect compliant editors. Lastly, the
tool distribution found on GitHub does not match those found in organizations
(e.g., IBM, SAP, and Oracle tools are missing; Signavio is underrepresented etc.).
Some BPMN models had more than 1 diagram, which we did not evaluate. On a
technical note, the exporter information in the BPMN diagrams itself are not
as reliable as one would hope: Missing information and ambiguous names are
possible sources of error.

7 Conclusion & Outlook

Within this paper we have shown that the majority of BPMN diagrams found
on GitHub are laid out left-right. The results suggest that the type (“toy” or
“non-toy”) of a process model influences the size and the layout direction. We have
found that further research into tool usage is warranted as nearly all top-down
diagrams are laid out using only two editors. Furthermore, we have shown that
most – although not as many as expected – repositories only contain diagrams
with one layout.

This work opens up new research angles: 1) How can “real” models be separated
from “toy” models automatically? Our heuristics of using key words in the file
path is a first approximation but while manually classifying the layouts, we also
encountered other diagrams (empty or default labels, unfinished diagrams, . . .)
that should possibly excluded. 2) The exact causal relationships between model
properties (size, pools), modeling tooling and the diagram layout needs to be
researched. We showed correlations but no causal relationships in this work. 3)
This study should be replicated and compared to model repositories from larger
organizations created by process modelers in their respective environments. 4)
Formalization of layout direction and automation of its detection in order to
scale to larger datasets and make the classification more objective. All in all, this
explorative work has laid the foundations for answering these questions.

54 Daniel Lübke and Daniel Wutke

Bibliography

1. Angela Birchler, Elisabeth Bosshart, Mike Märki, Peter Opitz, Jürg
Pauli, Beat Rigert, Yves Sandoz, Marc Schaffroth, Nicki Spöcker,
Christian Tanner, Konrad Walser, and Thomas Widmer. eCH-0158
BPMN-Modellierungskonventionen für die öffentliche Verwaltung. WWW:
https://www.ech.ch/dokument/fb5725cb-813f-47dc-8283-c04f9311a5b8,
September 2014.

2. Kathrin Figl and Mark Strembeck. On the importance of flow direction in
business process models. In 2014 9th International Conference on Software
Engineering and Applications (ICSOFT-EA), pages 132–136. IEEE, 2014.

3. Kathrin Figl and Mark Strembeck. Findings from an experiment on flow
direction of business process models. In EMISA 2015, 2015.

4. Thomas Heinze, Viktor Stefanko, and Wolfram Amme. Bpmn in the wild:
Bpmn on github. com. In Proceedings of the 12th ZEUS Workshop on Services
and their Composition, pages 26–29. CEUR-ws. org, 2020.

5. Thomas S. Heinze, Viktor Stefanko, and Wolfram Amme. Mining bpmn
processes on github for tool validation and development. In Selmin Nurcan,
Iris Reinhartz-Berger, Pnina Soffer, and Jelena Zdravkovic, editors, Enterprise,
Business-Process and Information Systems Modeling, pages 193–208, Cham,
2020. Springer International Publishing.

6. Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. The promises and perils of mining github.
In Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, MSR 2014, pages 92–101, New York, NY, USA, 2014. Association for
Computing Machinery.

7. Daniel Lübke, Ana Ivanchikj, and Cesare Pautasso. A template for categorizing
empirical business process metrics. In Business Process Management Forum -
BPM Forum 2017, 2017.

8. Daniel Lübke, Tobias Unger, and Daniel Wutke. Analysis of data-flow com-
plexity and architectural implications. In Daniel Lübke and Cesare Pautasso,
editors, Empirical Studies on the Development of Executable Business Pro-
cesses, pages 59–80. Springer, 2019 (to be published).

9. Bruce Silver and Bruce Richard. BPMN Method and Style, volume 2. Cody-
Cassidy Press Aptos, 2009.

Analysis of Prevalent BPMN Layout Choices on GitHub 55

A Deep Q-learning Scaling Policy
for Elastic Application Deployment

Fabiana Rossi

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

f.rossi@ing.uniroma2.it

Abstract The ability of cloud computing to provide resources on de-
mand encourages the development of elastic applications. Differently
from the popular threshold-based solutions used to drive elasticity, we
aim to design a flexible approach that can customize the adaptation pol-
icy without the need of manually tuning various configuration knobs. In
this paper, we propose two Reinforcement Learning (RL) solutions (i.e.,
Q-learning and Deep Q-learning) for controlling the application elasticity.
Although Q-learning represents the most popular approach, it may suffer
from a possible long learning phase. To improve scalability and identify
better adaptation policies, we propose Deep Q-learning, a model-free RL
solution that uses a deep neural network to approximate the system dy-
namics. Using simulations, we show the benefits and flexibility of Deep
Q-learning with respect to Q-learning in scaling applications.

Keywords: Deep Q-learning · Elasticity · Reinforcement Learning ·
Self-adaptive systems.

1 Introduction

The dynamism of working conditions calls for an elastic application deployment,
which can be adapted in face of changing working conditions (e.g., incoming
workload) so to meet stringent Quality of Service (QoS) requirements. Cloud
providers, e.g., Amazon, Google, that support multi-component applications usu-
ally use static thresholds on system-oriented metrics to carry out the adaptation
of each application component. As shown in [11,12], the manual tuning of such
scaling thresholds is challenging, especially when we need to specify critical val-
ues on system-oriented metrics and the application exposes its requirements in
terms of user-oriented metrics (e.g., response time, throughput, cost). Differently
from the popular static threshold-based approaches, we aim to design a flexible
policy that can adapt the application deployment, according on user-defined
goals, without the need of manually tuning various configuration knobs.

In this paper, we use Reinforcement Learning (RL) to adapt the application
deployment. RL allows to express what the user aims to obtain, instead of how
it should be obtained (as required by threshold-based policies). Most of the
existing works consider model-free RL algorithms, e.g., Q-learning, to drive the

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

application deployment (e.g., [2,5]). However, one of the main issue with Q-
learning is the possibly long learning phase, which is especially experienced when
the number of system states increases. An approach to boost the learning process
is to provide the agent with system knowledge. By exploiting it, the agent can
more easily find a suitable trade-off between system- and user-oriented metrics
(i.e., resource utilization and target response time). Therefore, together with
Q-learning, we propose Deep Q-learning [8]. It uses deep neural networks to
approximate the system dynamics and to drive the application elasticity. Using
simulation, we demonstrate the advantages of the Deep Q-learning solution,
which learns a suitable scaling policy while meeting QoS requirements expressed
in term of target application response time (i.e., Rmax).

2 Related Work

The existing elasticity solutions rely on a wide set of methodologies, that we
classify in the following categories: mathematical programming, control theory,
queuing theory, threshold-based, and machine-learning solutions. The mathe-
matical programming approaches exploit methods from operational research in
order to solve the application deployment problem (e.g., [13,21]). The main draw-
back of these solutions is scalability; since the deployment problem is NP-hard,
other efficient solutions are needed. As surveyed in [15], few solutions use control
theory to change the replication degree of application containers (e.g., [3]). The
critical point of the control-theoretic approaches is the requirement of a good
system model, which can sometimes be difficult to be formulated. The key idea of
queuing theory is to model the application as a queuing system with inter-arrival
and service times having general statistical distributions (e.g., [4,10]). Neverthe-
less, queuing theory often requires to approximate the system behavior, discour-
aging its adoption in a real environment. Most of the existing solutions exploit
best-effort threshold-based policies based on the definition of static thresholds
for adapting the application deployment at run-time (e.g., [7,16]). Although a
threshold-based scaling policy can be easily implemented, it is a best-effort ap-
proach that moves complexity from determining the reconfiguration strategy
to the selection of critical values that act as thresholds. In the last few years,
machine learning has become a widespread approach to solve at run-time the
application deployment problem. RL is a machine learning technique by which
an agent can learn how to make good (scaling) decisions through a sequence of
interactions with the environment [17]. After executing an adaptation action in
the monitored system state, the RL agent experiences a cost that contributes
to learning how good the performed action was. The obtained cost leads an up-
date of a lookup table that stores the estimation of the long-term cost for each
state-action pair (i.e., the Q-function). Many solutions considered the classic
model-free RL algorithms (e.g., [9,18]), which however suffer from slow conver-
gence rate. To tackle this issue, different model-based RL approaches have been
proposed, e.g., [14,19]. They use a model of the system to drive the action explo-
ration and speed-up the learning phase. Although model-based RL approaches

A Deep Q-learning Scaling Policy for Elastic Application Deployment 57

can overcome the slow convergence rate of model-free solutions, they can suffer
from poor scalability in systems with a large state space. In this solution, the
lookup table has to store a separate value for each state-action pair. An approach
to overcome this issue consists in approximating the system behavior, so that
the agent can explore a reduced number of system configurations. Integrating
deep neural networks into Q-learning, Deep Q-learning has been widely applied
to approximate the system dynamics in a variety of domains, e.g., traffic offload-
ing [1]. However, to the best of our knowledge, it is so far poorly applied in the
context of application elasticity. Differently from all the above contributions, in
this paper we propose an application scaling policy based on Deep Q-learning;
then, we compare it against Q-learning.

3 RL-based Scaling Policy

RL is a special method belonging to the branch of machine learning. It refers
to a collection of trial-and-error methods by which an agent must prefer actions
that it found to be effective in the past (exploitation). However, to discover such
actions, it has to explore new actions (exploration).

At each discrete time step i, according to the monitored metrics, the RL agent
determines the application state and updates the expected long-term cost (i.e.,
Q-function). We define the application state as s = (k, u), where k is the number
of application instances, and u is the monitored CPU utilization. We denote by
S the set of all the application states. We assume that k ∈ {1, 2, ...,Kmax};
being the CPU utilization (u) a real number, we discretize it by defining that
u ∈ {0, ū, ..., Lū}, where ū is a suitable quanta and L ∈ N such that L · ū =
1. For each state s ∈ S, we define the set of possible adaptation actions as
A(s) ⊆ {−1, 0, 1}, where +1 is the scale-out action, −1 the scale-in action, and
0 is the do nothing decision. We observe that not all the actions are available
in any application state, due to the lower and upper bounds on the number of
application instances (i.e., 1 and Kmax, respectively). According to an action
selection policy, the RL agent identifies the scaling action a to be performed in
state s. The execution of a in s leads to the transition in a new application state
(i.e., s′) and to the payment of an immediate cost. We define the immediate
cost c(s, a, s′) as the weighted sum of different normalized terms, such as the
performance penalty, cperf , and resource cost, cres. Formally, we have:

c(s, a, s′) = wperf · cperf + wres · cres (1)

where wperf and wres, wperf + wres = 1, are non negative weights that allow us
to express the relative importance of each cost term. The performance penalty
is paid whenever the average application response time exceeds the target value
Rmax. The resource cost is proportional to the number of application instances.
We can observe that the formulation of the immediate cost function c(s, a, s′) is
general enough and can be easily customized with other QoS requirements.

The received immediate cost contributes to update the Q-function. The Q-
function consists in Q(s, a) terms, which represent the expected long-term cost

58 Fabiana Rossi

that follows the execution of action a in state s. The existing RL policies differ in
how they update the Q-function and select the adaptation action to be performed
(i.e., action selection policy) [17]. In [14], for example, we propose a model-based
RL approach that enriches the RL agent with a model of the system to drive
the exploration actions and speed up the learning phase. Since determining the
system model can be a not trivial task, in this paper we consider two model-
free RL solutions to adapt the application deployment. First, we consider the
simple model-free Q-learning (QL) algorithm that uses a table (i.e., Q-table)
to store the Q-value for each state-action pair. The Q-table allows to store the
real experience without approximation. However, this approach may suffer from
slow convergence rate when the number of state-action pairs increases. Then, to
tackle this issue, we present a Deep Q-learning (DQL) approach that combines
Q-learning with deep neural networks. The neural network allows to approximate
the Q-function using a non-linear function; in such a way, the agent can directly
compute Q(s, a) using s and a, instead of performing a Q-table lookup. By using
a Q-function approximation, the RL agent does not need to explore all the state-
action pairs before learning a good adaptation policy.
Q-learning. At time i, the QL agent selects the action a to perform in state s
using an ε-greedy policy on Q(s, a); the application transits in s′ and experiences
an immediate cost c. The ε-greedy policy selects the best known action for a
particular state (i.e., a = argmina∈A(s)Q(s, a)) with probability 1 − ε, whereas
it favors the exploration of sub-optimal actions with low probability, ε. At the
end of time slot i, Q(s, a) is updated using a simple weighted average:

Q (s, a)← (1− α)Q (s, a) + α

[
c+ γ min

a′∈A(s′)
Q(s′, a′)

]
(2)

where α, γ ∈ [0, 1] are the learning rate and the discount factor, respectively.
Deep Q-learning. DQL uses a multi-layered neural network, called Q-network,
to approximate the Q-function. For each time slot i, the DQL agent observes
the application state and selects an adaptation action using an ε-greedy policy
and the estimates of Q-values, as Q-learning does. Note that DQL is model-free:
it solves the RL task directly using samples, without explicitly modeling the
system dynamics. In a given state s, the Q-network outputs a vector of action
values Q(s, ·, φ), where φ are the network parameters. By approximating the Q-
function, the RL agent can explore a reduced number of system configurations
before learning a good adaptation policy. At the end of each time slot i, the Q-
network is updated by performing a gradient-descent step on (yi −Q(s, a, φi))

2

with respect to the network parameters φi. yi is the estimated long-term cost,
defined as yi = c + γ ·mina′Q(s′, a′, φi), where γ is the discount factor. When
only the current experience is considered, i.e., (s, a, c, s′), this approach is too
slow for practical real scenarios. Moreover, it is unstable due to correlations
existing in the sequence of observations. To overcome these issues, we consider a
revised DQL algorithm that uses a replay buffer and a separate target network
to compute yi [8]. To perform experience replay, the agent store its experience in
a buffer with finite capacity. A mini-batch of experience is drawn uniformly at
random from the replay buffer to remove correlations in the observation sequence

A Deep Q-learning Scaling Policy for Elastic Application Deployment 59

and to smooth over changes in the data distribution. In the classic DQL, the
same Q-network is used both to select and to evaluate an action. This can lead
to select overestimated values, resulting in overoptimistic estimates. To prevent
this, two networks are used (i.e., on-line and target network) and two value
functions are learned. The on-line network is used to determine the greedy policy
and the target network to determine its value. The target network parameters
are updated to the on-line network values only every τ steps and are held fixed
between individual updates.

4 Results

We evaluate the proposed deployment adaptation solutions using simulations.
Without lack of generality, at each discrete time step i, we model the applica-
tion as anM/M/ki queue, where ki is the number of application replicas. We set
the service rate µ to 120 requests/s. As shown in Fig. 1, the application receives
a varying number of requests. It follows the workload of a real distributed appli-
cation [6]. The application expresses the QoS in terms of target response time
Rmax = 15 ms. The RL algorithms use the following parameters: α = 0.1 and
discount factor γ = 0.99. We discretize the application state with Kmax = 10
and ū = 0.1. To update the application deployment, QL and DQL use an ε-
greedy action selection policy, with ε = 0.1. DQL uses a replay memory with
capacity of 50 observations and a batch size of 30; the target Q-network update
frequency is τ = 5 time units. We use Deeplearning4j1 library to implement
the neural networks. Correctly configuring the Q-network is an empirical task,
which requires some effort and several preliminary evaluations. In particular, we
use ReLu as the neuron activation function; due to its non-linear behavior, it is
one of the most commonly used function. To initialize the Q-network weights,
we use the Xavier method [20]. To avoid weights to diminish or explode during
network propagation, this method scales the weight distribution on a layer-by-
layer basis. To this end, it uses a normal distribution with centered mean and
standard deviation scaled to the number of layer’s input and output neurons.

1 https://deeplearning4j.org/

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000

D
a

ta
 r

a
te

 (
re

q
u

e
s
ts

/s
)

Simulation Time

Figure 1: Workload used for the reference application.

60 Fabiana Rossi

Table 1: Application performance under scaling policies.
Elasticity Configuration Rmax violations Average CPU Average number Median of Response
Policy (%) utilization (%) of replicas time (ms)

QL wperf = 1, wres = 0 3.15 56.20 4.17 9.51
wperf = 0.5, wres = 0.5 13.26 51.27 5.13 8.81
wperf = 0, wres = 1 42.27 65.56 3.90 11.88

DQL wperf = 1, wres = 0 1.05 36.85 6.63 8.38
wperf = 0.5, wres = 0.5 39.23 66.64 3.58 11.11
wperf = 0, wres = 1 88.51 89.18 1.58 +∞

DQL with wperf = 1, wres = 0 1.39 35.54 7.41 8.35
pre-trained wperf = 0.5, wres = 0.5 31.91 58.53 4.30 9.06

network wperf = 0, wres = 1 83.48 86.12 1.71 +∞

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(a) Deep Q-learning

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(b) Q-learning

Figure 2: Application performance using the weights wres = 0 and wperf = 1.

The Q-network architecture is fully-connected with 4 layers having {2, 15, 15, 3}
neurons (i.e., there are 2 hidden layers).

Table 1 summarizes the experimental results, including also the application
performance obtained with a pre-trained DQL. We can see that the application
has a different performance when different weights for the cost function are used
(Eq. 1). We first consider the set of weights wperf = 1 and wres = 0: in this
case, optimizing the application response time is more important than saving
resources. As shown in Fig. 2b, the QL solution often changes the application
deployment performing scaling operations. Moreover, the application response
time exceeds Rmax for 3.15% of the time. Conversely, taking advantage of the
approximated system knowledge, the DQL solution learns a better elasticity pol-
icy that successfully controls the application deployment (Fig. 2a). It registers
1.05% of Rmax violations and a median of the application response time lower
than the target application response time (i.e., 8.38 ms). We now consider the
case when saving resources is more important than meeting the Rmax bound, i.e.,
wres = 1 and wperf = 0. Intuitively, the RL agent should learn how to improve
resource utilization at the expense of a high application response time (i.e., that
exceeds Rmax). Table 1 and Fig. 3 show that, in general, DQL performs better
than QL in terms of resource usage. DQL registers 89.18% of resource utilization
running with 1.58 application replicas. This is very close to the lowest amount of

A Deep Q-learning Scaling Policy for Elastic Application Deployment 61

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(a) Deep Q-learning

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(b) Q-learning

Figure 3: Application performance using the weights wres = 1 and wperf = 0.

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(a) Deep Q-learning

0
5

10
15
20
25

R
e

s
p

o
n

s
e

 t
im

e
(m

s
)

 0

 25

 50

 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
)

0
2
4
6
8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

(b) Q-learning

Figure 4: Application performance using the weights wres = 0.5 and wperf = 0.5.

resources assignable to the application. Run-time adaptations are also avoided.
As a consequence, the application is overloaded and the resulting median re-
sponse time is unbounded. Conversely, the QL solution struggles to find a stable
configuration. It identifies an adaptation policy that runs the application using,
on average, 3.90 instances. On average, its resource usage is lower than in DQL
(65.56% and 89.18%, respectively), as also the percentage of the target appli-
cation response time Rmax violations. Besides the weight configurations at the
opposite ends, we can obtain a wide set of adaptation strategies that differ by the
relative importance of the two deployment goals. In Table 1 we propose a simple
case, where we set wperf = wres = 0.50. To visualize the update of the application
deployment by the two RL policies, we report in Fig. 4 the application behavior
during the whole experiment, when we want to optimize the performance avoid-
ing resource wastage (wperf = wres = 0.5). Intuitively, the RL agent has to find
a trade-off between the resource usage and the number of Rmax violations. The
neural network allows to approximate the Q-function using a non-linear func-
tion; in such a way, DQL can explore a reduced number of system configurations
before learning a good adaptation policy. On average, it runs the application
with 3.58 replicas, registering a 66.64% of CPU utilization. The median appli-

62 Fabiana Rossi

cation response time is 11.11 ms, with about 39% of Rmax violations. Although
we could pre-train the Q-network to further improve the DQL learned policy
(mitigating also the initial exploration phase), we observe that the obtained re-
sults are already remarkable, considering that DQL is model-free. Conversely,
when QL updates the application deployment, it continuously performs scaling
actions, meaning that QL is still exploring the best actions to perform. This
behavior is also reflected on the number of application instances, whose average
value is greater than those used in the wperf = 1 configuration. Being model-free
and storing experience without approximation, QL cannot quickly learn a suit-
able adaptation strategy for intermediate cost weight configurations during the
experiment.
Discussion. In this paper, we evaluated QL and DQL to adapt the application
deployment at run-time. First, we showed the flexibility provided by a RL-based
solution for updating the application deployment. By correctly defining the rela-
tive importance of the deployment objectives through the cost function weights
in Eq. 1, the RL agent can accordingly learn a suitable application deployment
strategy. Very different application behavior can be obtained when we aim to op-
timize the application response time, resource saving, or a combination thereof.
Second, we showed that a DQL approach takes advantage of the approximate
system knowledge and outperforms QL, especially when we pre-train the Q-
network. We observe that, although we do not need to define the system model
as in a model-based approach, DQL introduces the effort of defining a suitable
Q-network architecture. However, this is an empirical process that may require
a large number of preliminary experiments and trial-and-error repetitions.

5 Conclusion

Most policies for scaling applications resort on threshold-based heuristics that
require to express how specific goals should be achieved. In this paper, aiming to
design more flexible solution, we have proposed Q-learning and Deep Q-learning
policies for controlling the application elasticity. Relying on a simulation-based
evaluation, we have shown the benefits of the proposed RL-based approaches.
Deep Q-learning exploits deep neural networks to approximate the system dy-
namics, estimated through system interactions. The deep neural network speeds
up the learning phase, improving the application performance; however, model-
ing the neural network architecture can be challenging.

As future work, we plan to further investigate RL approaches for elastic-
ity. We will investigate more sophisticated techniques for improving the conver-
gence speed of the learning process (e.g., by leveraging Bayesian Decision Trees,
Function Approximation). Moreover, we plan to extend our model by explicitly
considering multiple system-oriented metrics within the adaptation policies.

References

1. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic
computation offloading in mobile edge for IoT applications. Future Gener. Comput.

A Deep Q-learning Scaling Policy for Elastic Application Deployment 63

Syst. 90, 149 – 157 (2019)
2. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement

learning techniques for fuzzy cloud auto-scaling. In: Proc. of IEEE/ACM CCGrid
’17. pp. 64–73 (2017)

3. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proc. of ACM SIGSOFT FSE ’16.
pp. 217–228. ACM (2016)

4. Gias, A.U., Casale, G., Woodside, M.: Atom: Model-driven autoscaling for mi-
croservices. In: Proc. of IEEE ICDCS ’19. pp. 1994–2004 (2019)

5. Horovitz, S., Arian, Y.: Efficient cloud auto-scaling with SLA objective using Q-
learning. In: Proc. of IEEE FiCloud ’18. pp. 85–92 (2018)

6. Jerzak, Z., Ziekow, H.: The debs 2015 grand challenge. In: Proc. ACM DEBS’15.
pp. 266–268 (2015)

7. Kwan, A., Wong, J., Jacobsen, H., Muthusamy, V.: Hyscale: Hybrid and network
scaling of dockerized microservices in cloud data centres. In: Proc. of IEEE ICDCS
’19. pp. 80–90 (2019)

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., et al.: Human-level
control through deep reinforcement learning. Nature 518, 529–533 (2015)

9. Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.: Autonomic
decentralized elasticity based on a reinforcement learning controller for cloud ap-
plications. Future Gener. Comput. Syst. 94, 765–780 (2019)

10. Rossi, F., Cardellini, V., Lo Presti, F.: Hierarchical scaling of microservices in
Kubernetes. In: Proc. of IEEE ACSOS ’20. pp. 28–37 (2020)

11. Rossi, F., Cardellini, V., Lo Presti, F.: Self-adaptive threshold-based policy for
microservices elasticity. In: In Proc. of IEEE MASCOTS ’20. pp. 1–8 (2020)

12. Rossi, F.: Auto-scaling policies to adapt the application deployment in Kubernetes.
In: CEUR Workshop Proc. 2020. vol. 2575, pp. 30–38 (2020)

13. Rossi, F., Cardellini, V., Lo Presti, F., Nardelli, M.: Geo-distributed efficient de-
ployment of containers with Kubernetes. Comput. Commun 159, 161 – 174 (2020)

14. Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-
based applications using Reinforcement Learning. In: Proc. of IEEE CLOUD ’19.
pp. 329–338 (2019)

15. Shevtsov, S., Weyns, D., Maggio, M.: Self-adaptation of software using automat-
ically generated control-theoretical solutions. Engineering Adaptive Software Sys-
tems pp. 35–55 (2019)

16. Srirama, S.N., Adhikari, M., Paul, S.: Application deployment using containers
with auto-scaling for microservices in cloud environment. J. Netw. Comput. Appl.
160 (2020)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2 edn. (2018)

18. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. IEEE Trans. Serv. Comput. 12(5),
712–725 (2019)

19. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid Reinforcement Learning
approach to autonomic resource allocation. In: Proc. of IEEE ICAC ’06. pp. 65–73
(2006)

20. Xavier, G., Yoshua, B.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS’10. vol. 9, pp. 249–256 (2010)

21. Zhao, D., Mohamed, M., Ludwig, H.: Locality-aware scheduling for containers in
cloud computing. IEEE Trans. Cloud Comput. 8(2), 635–646 (2018)

64 Fabiana Rossi

Profiling Lightweight Container Platforms:
MicroK8s and K3s in Comparison to Kubernetes

Sebastian Böhm and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
{sebastian.boehm,guido.wirtz}@uni-bamberg.de

Abstract. Kubernetes (K8s) is nowadays the first choice for manag-
ing containerized deployments that rely on high–availability, scalability,
and fault tolerance. To enable the usage of container orchestration in
resource–constrained environments, lightweight distributions emerged.
The platforms MicroK8s (mK8s) and K3s, which are analyzed in this
paper, claim to provide an easy deployment of K8s in a simplified form
and way. In terms of resource utilization and deployment time of a K8s
cluster, the lightweight platforms promise savings compared to K8s. We
analyzed lightweight K8s distributions in a quantitative way by perform-
ing an experiment that monitors the utilization and time consumption
compared to a native K8s cluster lifecycle. This involves starting, stop-
ping, and adding nodes as well as creating, running, and deleting deploy-
ments. We show that not all platforms exhibit a quantitative advantage
over K8s. K3s caused a similar resource consumption but had some per-
formance advantages for starting new nodes and adding nodes to the
cluster. The platform MicroK8s has shown a higher resource utilization
and time consumption for all steps in our modeled lifecycle simulation.

Keywords: Lightweight Kubernetes · Container orchestration · Con-
tainer lifecycle · Performance model.

1 Introduction

Kubernetes (K8s), nowadays the state–of–the–art container orchestrator, enables
an efficient and comfortable way to run large and complex sets of interacting
containerized applications. The container platform offers a comprehensive set of
features to build highly available, scalable, and fault–tolerant clusters.1 Driven
by the emergence of containerization, a lightweight way of virtualization, K8s
pervaded many different application areas like Fog, Edge, and IoT computing [5–
7]. Over the years, K8s was already in focus of research regarding the resource
utilization during running workloads [1, 2, 4, 8, 9]. Eiermann et al. [1] have shown
that K8s causes a higher utilization in idle and load conditions compared to alter-
native platforms like Docker Swarm. This may limit the applicability in fields like
Fog, Edge, and IoT computing that are characterized by resource–constrained
devices but require features like high–availability, scalability, and fault–tolerance

1 https://kubernetes.io/

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

to work in critical areas like surveillance and smart cities. Hence, K8s distribu-
tions claiming to be lightweight emerged to leverage the former mentioned appli-
cation fields with K8s–managed deployments. The platforms MicroK8s (mK8s)2,
K3s3, KubeEdge (KE)4, and minikube (MK)5 provide K8s–compatible distribu-
tions by modifying and reorganizing essential components. They aim to simplify
configuring, running, and maintaining clusters to enable deployments with low–
end devices. So far, quantitative performance benchmarks refer mainly to idle
and load conditions [1, 2]. Other studies also consider the resource consumption
when creating, starting, and stopping container instances [8, 9]. Nevertheless,
there is no detailed evaluation regarding the resource and time consumption of
steps like starting, adding, draining, or stopping nodes. Therefore, this paper
aims to propose an experimental approach to evaluate the overall lifecycle of
K8s. For this, we conducted an experiment with selected platforms to answer
the following research question: What is the resource and time consump-
tion of the lightweight distributions mK8s and K3s in comparison to
native K8s during typical events in a cluster lifecycle?

We perform a simulation in a reproducible manner to derive detailed insights
regarding the resource consumption and time consumption of all platforms. We
decided to select mK8s and K3s as platforms because the controlling of cluster
operations, like starting and stopping nodes, is working similar to K8s. KE is
not considered in our research because it requires an additional K8s in the cloud
which mitigates a fair comparison to other platforms.

The rest of the paper is structured as follows: First, we discuss existing
approaches to evaluate K8s distributions shortly (Section 2). Then, we cover
the concepts of the considered platforms (Section 3), which help to comprehend
the design and the results of the performance comparison in Section 4. Finally,
we provide a critical review of the proposed experiment (Section 5) and outline
plans for further experimental studies (Section 6).

2 Related Work

Benchmarking container platforms is not a novel part of research. Eiermann et
al. [1] compared the CPU and memory utilization of a cluster consisting of five
low–end devices running idle, running Docker Swarm, and finally K8s. Based on
an HTTP load testing scenario, K8s has shown a 9–40 times higher utilization on
average in comparison to Docker Swarm. Fathoni et al. [2] followed this approach
and evaluated the lightweight platforms KE and K3s. They captured the CPU
and memory utilization of a two–node cluster in idle and load conditions. They
did not obtain a significant difference. K3s was compared to an additional K8s–
compatible platform, called FLEDGE, by Goethals et al. [4]. They measured
the needed amount of memory and the disk utilization of FLEDGE, K8s, and

2 https://microk8s.io/
3 https://k3s.io/
4 https://kubeedge.io/en/
5 https://minikube.sigs.k8s.io/docs/start/

66 Sebastian Böhm and Guido Wirtz

K3s with different processor architectures and container runtimes. FLEDGE
used around 50 % less resources than K8s and 10 % less than K3s on a x64
architecture. Medel et al. [8, 9] investigated different operational states of pods
and containers. They measured the time to create, execute, restart, and stop a
varying number of containers managed by a certain amount of pods. In addition,
they obtained metrics for CPU, memory, disk, and network utilization.

However, there is no comprehensive analysis how the different platforms per-
form during a complete cluster lifecycle. Former work focuses mainly on idle
and load conditions as well as applying deployments to an already existing clus-
ter. The resource consumption for operations like starting, stopping, adding and
removing nodes from the cluster is not considered. Hence, we provide a per-
formance comparison model that covers all steps to track creating, starting,
running, stopping, and deleting of a K8s cluster.

3 Lightweight Kubernetes

Kubernetes. The container platform K8s represents a cluster based on a set
of worker nodes. The worker nodes run so–called pods that contain a set of
workloads (e.g., applications or batch jobs) to be executed. The set of worker
nodes is managed by the control plane, which consists of several components
that can be distributed over different nodes. The most important components
are the kube–apiserver that exposes an API to interact with the cluster, etcd as
distributed persistence layer to keep track of the cluster data, the kube–scheduler
which is assigning pods to available nodes based on a set of policies, and the
kube–controller–manager that is in charge of managing the lifecycle of a node and
to expose service endpoints. Each node runs a kubelet that ensures the execution
of containers in a pod and a kube–proxy to realize networking between nodes.6

K8s can be installed via provided package repositories. Using K8s involves
the startup of the control plane, adding worker nodes to the cluster, and ap-
plying a deployment (a description of the workload to be executed). The same
steps need to be done vice versa to tear down the cluster completely. At this,
K8s requires at least 2 vCPUs with 2 GB memory.7

MicroK8s. Maintained by Canonical, mK8s aims to simplify the usage of K8s
on public and private clouds by providing a lightweight and fully compliant K8s
distribution, especially for low–end application areas like IoT.8 By default, mK8s
enables all basic components of K8s (like api–server, scheduler, or controller–
manager) to make the cluster available. Further add–ons (e.g., DNS, ingress,
or the metrics–server) can be enabled with one single command.9 The realiza-

6 https://kubernetes.io/docs/concepts/overview/components/
7 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-

cluster-kubeadm/
8 https://microk8s.io/docs
9 https://microk8s.io/docs/addons

Profiling Lightweight Container Platforms: MicroK8s and K3s in Comparison to
Kubernetes 67

tion of high–availability, where multiple nodes carry the control plane and the
datastore, can be achieved with a few commands.10

mK8s is provided by snap, Canonicals’s package manager that runs applica-
tions in a sandbox.11 Instead of etcd, which is used by K8s, mK8s uses Dqlite
as high–availability datastore.10,12 It is recommended to run mK8s with at least
4 GB of memory and 20 GB of storage (SSD recommended).8

K3s. Rancher offers K3s as lightweight K8s distribution, also with focus on
low–end application areas. It is also fully compliant to K8s, contains all basic
components by default, and targets a fast, simple, and efficient way to provide
a highly available and fault–tolerant cluster to a set of nodes. The deployment
takes place via one single and small binary including dependencies.3

Similar to mK8s, Rancher replaced etcd by another datastore, here sqlite3.
Also, in–tree storage driver and cloud provider components are removed to keep
the size small. K3s tries to lower the memory footprint by a reorganization of
the control plane components of the cluster. The K3s master and workers, also
called server and agents, encapsulate all the components in one single process.13

K3s is installed via a shell script that allows it to be run as a server or agent
node. To achieve high–availability, new worker nodes can be easily added to the
cluster by running a few commands.14 The minimum hardware requirements are
at least 1 vCPU and 512 MB of memory.15

4 Performance Comparison

This chapter covers the performance comparison of the three considered plat-
forms. In the first place, we describe our experimental approach and environment
shortly. Afterward, we analyze our obtained results from the experiment.

4.1 Experimental Setup and Design

To evaluate the resource consumption, we set up a controlled environment to
achieve reproducible, comprehensible, and consistent results. According to the
recommended system requirements (Section 3), we used four Ubuntu 20.04 Vir-
tual Machines (VMs) with 2 vCPUs, 4 GB memory and a fast SSD with a capac-
ity of 50 GB each. All VMs run on-premises on one single physical host machine
with Kernel–based Virtual Machine (KVM) as hypervisor and containerd as
container runtime. The host machine is equipped with a AMD Ryzen 7 3700X
CPU (16 cores), 64 GB memory and a fast SSD. We deployed netdata as mon-
itoring tool on all machines to collect data about the system utilization with a

10 https://microk8s.io/docs/high-availability
11 https://snapcraft.io/docs/getting-started
12 https://kubernetes.io/docs/concepts/overview/components/
13 https://rancher.com/docs/k3s/latest/en/architecture/
14 https://rancher.com/docs/k3s/latest/en/
15 https://rancher.com/docs/k3s/latest/en/installation/installation-requirements/

68 Sebastian Böhm and Guido Wirtz

sample rate of 5 s. The collected data is stored in a document–oriented database
on another machine. Netdata’s monitoring agent creates a small CPU utilization
of around 1 %, a negligible memory usage and disk utilization.16

In order to evaluate the entire lifecycle, we extended the approach of Fathoni
et al. [2] as follows: We redefined the set of events to be evaluated. That means,
we collect the CPU, memory, and I/O utilization during starting, adding, run-
ning, draining, and stopping of nodes, as well as applying, running, and deleting
a small example deployment (nginx–deployment) with three replicas.17

The experiment is structured as follows: First, we installed all platforms
with one master and three workers on the respective machines to create a high–
availability cluster. Secondly, we stopped all platforms and platform–related ser-
vices to put the system into idle condition. Finally, predefined ansible playbooks
instruct the machines to perform the different steps of the lifecycle model. All
playbooks and further details of the implementation are available on Github18.
In total, we performed 25 runs per platform and averaged the results. The raw
data and detailed metrics for all runs are available on GitHub19 as well.

4.2 Experimental Results

Figure 1 shows the average resource utilization by master and worker nodes for
all platforms over time. The small numbers at the top of each diagram imply
the middle of the different steps in the lifecycle simulation.

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

K3s, CPU K3s, Memory K3s, Disk

mK8s, CPU mK8s, Memory mK8s, Disk

K8s, CPU K8s, Memory K8s, Disk

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 10 20 30 0 10 20 30 0 10 20 30

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Time (min.)

U
til

iz
at

io
n

(%
)

Role

Master

Worker

Fig. 1: Lifecycle analysis for K8s, MicroK8s, and K3s.

16 https://github.com/netdata/netdata#features
17 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
18 https://github.com/spboehm/kns-profiling
19 https://spboehm.github.io/kns-profiling/

Profiling Lightweight Container Platforms: MicroK8s and K3s in Comparison to
Kubernetes 69

Table 1: Average resource consumption (µ/σ) for all platforms and events.
No. Event Role K8s mK8s K3s

CPU Memory Disk CPU Memory Disk CPU Memory Disk

1 System idle
Master 0.64/0.3 8.66/0.81 0.05/0.09 0.76/0.35 10.16/1.12 0.08/0.11 0.6/0.27 9.15/0.8 0.04/0.09
Worker 0.62/0.29 8.04/0.59 0.04/0.09 0.74/0.3 9.69/0.81 0.07/0.12 0.62/0.25 8.28/0.51 0.04/0.08

2 Start master
Master 19.15/17.87 13.32/3.98 4.15/5.55 24.78/20.43 20.6/4.64 4.88/7.61 28.83/12.65 16.46/4.71 2.68/2.84
Worker 0.5/0.15 7.99/0.58 0.01/0.03 0.61/0.17 9.6/0.79 0.04/0.07 0.52/0.14 8.22/0.5 0.01/0.05

3 Master idle
Master 4.67/2.82 20.83/0.77 1.87/1.92 8.61/6.08 25.88/1.54 2.19/3.15 5.73/8.28 23.82/1.11 1.12/3.44
Worker 0.57/0.16 8/0.56 0.02/0.06 0.66/0.18 9.49/0.76 0.03/0.07 0.57/0.16 8.24/0.48 0.02/0.09

4 Add workers
Master 6.33/2.59 21.27/0.65 3.18/1.77 15.95/10.62 25.91/3.13 3.23/2.82 14.99/6.88 27.07/2.08 0.39/0.37
Worker 2.77/3.51 9.06/0.96 0.57/1.51 12.67/19.76 16.02/6.36 3.63/6.07 8.37/10.84 9.66/1.03 1.93/3.66

5 Cluster idle
Master 4.27/1.12 21.3/0.64 1.71/0.46 8.83/2.58 27.85/1.1 1.87/0.83 3.77/2.62 28.38/0.99 0.23/0.22
Worker 1.1/0.4 9.77/0.48 0.05/0.18 5.78/3.49 23.99/1.14 1.92/2.13 1.26/0.86 10.95/0.43 0.16/0.67

6 Apply deployment
Master 7.19/4.53 21.3/0.61 3.12/1.92 17.72/5.06 28.29/1.09 3.74/3.39 15.37/5.85 28.74/0.96 0.77/0.97
Worker 1.67/1.02 9.73/0.51 0.49/1.02 11.03/7.72 24.42/1.04 4.41/3.78 5.63/6.38 11.18/0.44 1.59/2.79

7 Deployment idle
Master 4.23/1.33 21.4/0.62 1.67/0.63 9.01/2.5 28.6/1.07 2.46/2.82 3.69/2.51 28.48/0.99 0.23/0.2
Worker 1.16/0.38 10.06/0.43 0.07/0.28 5.92/2.77 25.03/0.99 2.49/3.26 1.38/2.2 11.61/0.4 0.18/1.4

8 Delete deployment
Master 10.71/2.96 21.5/0.6 2/0.57 17.63/3.63 29.18/0.98 2.34/1.32 14.67/6.03 28.82/1.07 0.31/0.15
Worker 1.45/0.81 9.97/0.42 0.33/0.39 5.49/1.79 25.16/0.92 2.15/1.41 1.54/0.8 11.58/0.36 0.29/0.37

9 Drain workers
Master 4.58/1.69 21.71/0.5 1.36/0.16 7.77/2.52 29.55/1.03 1.89/2.78 3.56/2.26 28.89/0.73 0.28/0.2
Worker 2/1.97 9.94/0.42 0.22/0.51 5.95/10.27 17.3/7.1 1.52/3.24 2.08/1.5 11.37/0.47 0.08/0.1

10 Stop master
Master 3.91/0.65 21.53/0.7 1.24/0.17 3.38/3.91 15.61/6.12 0.66/1.48 3.15/0.87 27.16/1.46 0.24/0.11
Worker 0.64/0.14 8.31/0.48 0.1/0.08 0.71/0.21 9.89/0.66 0.07/0.12 0.65/0.18 8.71/0.29 0.18/0.29

For instance, event no. 2 involves the event Start master. This explains the
very short peek in the CPU and I/O utilization as well as the increasing amount
of memory. To measure the utilization of all idle events (i.e., event no. 1, 3,
5, and 7 - see Table 1 for details), we defined a time interval of five minutes
to obtain the average utilization. Apart from mK8s, K8s and K3s are showing
similar results, especially in terms of the time needed to pass through all steps
in the experiment. Only mK8s needed more time (µ = 1860 s / σ = 12.9 s) in
comparison to K8s (1379 s / 17.1 s) and K3s (1361 s / 9.47 s). The platforms
K8s and K3s cause similar load profiles for all metrics as displayed in Table 1.
However, K3s burdens CPU and memory slightly more than K8s but shows a
smaller average and volatility in disk utilization. K3s has shown slightly better
results for CPU and disk utilization in comparison to K8s only for a few events
(e.g., event no. 5, 7, 9, and 10). The memory consumption of mK8s and K3s is
quite similar. However, mK8s shows the highest utilization for CPU and disk. On
average, the master nodes mostly need more resources compared to the worker
nodes because cluster–managing services are located there.

0.05
0.47 0.39

0.54 0.85 0.49 0.05 0.11 0.04

CPU Memory Disk

K8s mK8s K3s K8s mK8s K3s K8s mK8s K3s
0.0

0.5

1.0

1.5

0

5

10

15

20

0

2

4

6

Platform

U
til

iz
at

io
n

(%
)

Platform

K8s

mK8s

K3s

Fig. 2: Resource utilization for K8s, MicroK8s, and K3s (� = σ).

70 Sebastian Böhm and Guido Wirtz

Figure 2 shows the average utilization of all events for all platforms as box
plots. Furthermore, the standard deviation is displayed (� = σ). The previously
described results are also reflected in this overall and averaged comparison. The
platform mK8s shows the worst results for all metrics. Regarding CPU and
memory utilization, the differences between K8s and K3s are very small. K3s
shows a slightly smaller disk utilization. Consequently, the claim of lightweight
K8s holds only partially. All platforms exhibit a small σ which indicates that
the experiment created stable results under repeated simulations. Also, the box
plots do neither show an extensive amount of outliers nor a high dispersion.

The taken amount of time for selected steps in the cluster lifecycle is displayed
in Figure 3. The values refer to all four nodes. K3s shows better results for nearly
all events compared to K8s, except the needed time to apply deployments and
drain workers. In this comparison, mK8s is quite close to K8s but needs a very
long time for adding and draining workers. mK8s starts a master node a bit
faster compared to K8s but slower than K3s. The creation of new deployments
happens nearly in the same time for mK8s and K3s. K8s applies the deployment
around four times faster than the other platforms. The deletion of a deployment
by mK8s roughly takes twice the time K8s or K3s needs. Tearing down the
cluster happens rapidly as well, mK8s needs around 32 seconds.

1.52 4.37 0.64 13.02 0.13 0.077.46 4.76 2.32
17.34

1.55 0.092.92 0.46 0.89 8.64 0.1 0.03

 3
5.

86

 4
7.

30

 4
.3

3

 2
1.

42

 3
.5

5

 1
.9

6

 3
2.

56

12
5.

93

 1
7.

76 4
7.

33

33
1.

61

 3
1.

50

 2
3.

33

 2
4.

09

 1
5.

42

 1
9.

56

 3
.8

8

 1
.1

8
0

100

200

300

400

Start
master

Add
workers

Apply
deployment

Delete
deployment

Drain
workers

Stop
master

Platform

T
im

e
(s

ec
.) Platform

K8s

mK8s

K3s

Fig. 3: Average time consumption for K8s, MicroK8s, and K3s (� = σ).

5 Discussion

The obtained results from the previous chapter can be explained with the dif-
ferent characteristics of the lightweight platforms (Section 3). K3s has shown a
very small I/O utilization potentially due to the usage of sqlite3 instead of etcd
as database. In terms of time, K3s shows merits for all events except applying
deployments or draining workers compared to K8s. Bundling all components of
K8s into one single process may lead to this performance enhancement. mK8s
had overall a higher resource utilization. Especially adding and draining work-
ers needed a long time. The reason for this is that mK8s is optimized for a

Profiling Lightweight Container Platforms: MicroK8s and K3s in Comparison to
Kubernetes 71

single-node cluster. When a particular node leaves the cluster, it restarts again
as single-node K8s automatically.20 There may be an option to avoid this restart
and reduce the time for draining nodes by stopping mK8s forcefully. However, we
followed the official documentation, which also states that adding and graceful
draining of nodes may require minutes.10 It is worth noting that mK8s has the
highest system requirements, followed by K8s and finally K3s (Section 3).

The proposed experiment and the obtained results underlie a few limitations.
Firstly, we tested all platforms running on a virtualized setup with KVM and
containerd. Other alternatives may have an impact on the experimental results.
However, containerd is the recommended runtime for mK8s and K3s.21,22 We
measured only the utilization on the overall system–level without network uti-
lization and did not consider the utilization of K8s–related processes in detail.
Furthermore, we modeled the entire lifecycle with a limited set of machines to
obtain results on how long each platform needs to perform a set of actions.w
We did not burden the nginx deployment and kept everything in idle condition.
However, a performance comparison based on applications was not in focus of
our research. There may be a need for synthetic benchmarks for lightweight
on–premises container platforms, such as performed by Ferreira and Sinnott [3].

6 Conclusion and Future Work

This paper showed an approach to compare different K8s distributions in a quan-
titative way. To answer our research question, we conclude that replacing K8s
with a lightweight distribution can be beneficial in particular circumstances. For
the most part, there are only small differences regarding the resource utilization
between K8s and K3s. mK8s showed a higher resource and time consumption for
nearly all events. K3s has shown a better performance except applying deploy-
ments and draining workers in terms of needed time. Although our experiment
shows only preliminary results and the findings are limited to some extent, we
argue that not all platforms fulfill the claim being more lightweight compared to
K8s. Particularly areas like Fog, Edge, and IoT computing with a highly varying
number of nodes over time can benefit from lightweight K8s platforms.

We plan to enrich our proposed simulation model with detailed analysis at
the process–level for future work. To increase the overall validity, we want to
run the experiment at a larger scale to get better insights how the different
distributions manage a larger number of nodes and workloads. Furthermore, we
want to deepen the statistical analysis to obtain significant differences between
the platforms regarding resource utilization and time consumption of our lifecycle
model. Finally, it is worth considering the qualitative dimension. As pointed out
in Section 3, each platform provides various ways to deploy and interact with
the cluster. We want to consistently evaluate these differences in a qualitative
survey by taking other lightweight platforms like KE and MK into consideration.

20 https://microk8s.io/docs/clustering
21 https://microk8s.io/docs/configuring-services
22 https://rancher.com/docs/k3s/latest/en/advanced/

72 Sebastian Böhm and Guido Wirtz

References

1. Eiermann, A., Renner, M., Großmann, M., Krieger, U.R.: On a fog computing
platform built on ARM architectures by docker container technology. In: Innova-
tions for Community Services, pp. 71–86. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-60447-3 6

2. Fathoni, H., Yang, C.T., Chang, C.H., Huang, C.Y.: Performance compari-
son of lightweight kubernetes in edge devices. In: Pervasive Systems, Algo-
rithms and Networks, pp. 304–309. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-30143-9 25

3. Ferreira, A.P., Sinnott, R.: A performance evaluation of containers running on
managed kubernetes services. In: 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208. IEEE (2019).
https://doi.org/10.1109/cloudcom.2019.00038

4. Goethals, T., Turck, F.D., Volckaert, B.: FLEDGE: Kubernetes compatible con-
tainer orchestration on low-resource edge devices. In: Internet of Vehicles. Tech-
nologies and Services Toward Smart Cities, pp. 174–189. Springer International
Publishing (2020). https://doi.org/10.1007/978-3-030-38651-1 16

5. Javed, A., Heljanko, K., Buda, A., Framling, K.: CEFIoT: A fault-tolerant IoT ar-
chitecture for edge and cloud. In: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), pp. 813–818. IEEE (2018). https://doi.org/10.1109/wf-iot.2018.8355149

6. Kayal, P.: Kubernetes in fog computing: Feasibility demonstration, limitations and
improvement scope : Invited paper. In: 2020 IEEE 6th World Forum on Internet of
Things, pp. 1–6. IEEE (2020). https://doi.org/10.1109/wf-iot48130.2020.9221340

7. Kristiani, E., Yang, C.T., Huang, C.Y., Wang, Y.T., Ko, P.C.: The implementa-
tion of a cloud-edge computing architecture using OpenStack and kubernetes for
air quality monitoring application pp. 1–23 (2020). https://doi.org/10.1007/s11036-
020-01620-5

8. Medel, V., Rana, O., ángel Bañares, J., Arronategui, U.: Modelling perfor-
mance & resource management in kubernetes. In: Proceedings of the 9th Inter-
national Conference on Utility and Cloud Computing, pp. 257–262. ACM (2016).
https://doi.org/10.1145/2996890.3007869

9. Medel, V., Tolosana-Calasanz, R., Bañares, J.Á., Arronategui, U., Rana, O.F.: Char-
acterising resource management performance in kubernetes. vol. 68, pp. 286–297.
Elsevier BV (2018). https://doi.org/10.1016/j.compeleceng.2018.03.041

All links were last followed on February 20, 2021.

Profiling Lightweight Container Platforms: MicroK8s and K3s in Comparison to
Kubernetes 73

An Evaluation of Saga Pattern Implementation
Technologies

Karolin Dürr, Robin Lichtenthäler, and Guido Wirtz

Distributed Systems Group, University of Bamberg

Abstract. The Saga pattern is frequently mentioned in the literature
to structure communication workflows in Microservices Architectures.
To ease the implementation of the Saga pattern frameworks and tools
have emerged. By implementing an exemplary use case, we qualitatively
evaluate two of such technological solutions in this paper according to
criteria relevant for Microservices Architectures. This evaluation can be
considered when deciding on which technology to use for implementing
the Saga pattern, or also as a more general insight into what should
be kept in mind when implementing the Saga pattern in Microservices
Architectures.

Keywords: Microservices, Saga pattern, Workflow

1 Introduction

The Microservices Architecture is a pattern that emerged from real-world usage
and constitutes a fast-moving topic [5, 9, 16]. A microservice is a small and
autonomous service modeled around a business domain. A distributed system
that consists of numerous microservices represents the Microservices Architecture
[5] where data storage is ideally not shared, but owned exclusively by each mi-
croservice. Communication between microservices happens via messages over the
network [9]. The main advantage is service independence enabling independent
deployability, maintainability and evolvability of services [11]. A main challenge,
however, is inter-service communication, because communication over the network
is comparatively slow and unreliable [5]. The question arises how this communi-
cation can be structured and managed, especially for complex business scenarios
with multiple services which even require certain transactional guarantees [16].

Such a complex business scenario would be booking a trip where the booking
includes several steps such as booking a flight, a hotel, and a rental car. Applied
to a Microservices Architecture where different microservices are responsible for
the different steps, this scenario has also been used by Catie McCaffrey in a
conference talk1 to motivate the usage of the Saga pattern.

Because all steps are required to book a trip as a whole, a classical approach
would be to use a distributed transaction for example with the 2-Phase Commit

1 https://www.youtube.com/watch?v=xDuwrtwYHu8, last accessed: 2021-02-17

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

(2PC) protocol [1, 9]. However, classical distributed transactions contradict the
service independence characteristic of a Microservices Architecture. First, the 2PC
protocol depends on the availability of all participants [7, 11]. If one participant
fails, the system as a whole becomes unavailable. Second, the scalability is
affected, because 2PC participants need to lock resources which can affect the
overall transactional throughput and lead to competitive situations [9, 12]. And
third, distributed transactions are missing support from modern technologies,
like NoSQL databases or message brokers [11].

Therefore, other approaches have been discussed [3, 7, 9] with the Saga pattern
being mentioned frequently [6, 10, 11, 15]. The Saga pattern divides a transaction
that might take a long time into multiple local ones. Thereby, it reduces the
dependence on the availability of all participants at the same time and prevents
the need to lock all included resources until full completion. Although it can
therefore not provide the same transactional guarantees as, for example, the 2PC
protocol, it aligns better with the characteristics of Microservices Architectures.
Using the Saga pattern for the trip booking scenario means that still the whole
trip booking needs to be supervised by one service. However, the included steps,
such as booking a hotel or booking a flight, are done more independently in local
transactions by the different services involved.

Because this separation into multiple more independent transactions leads to
additional challenges, implementing the Saga pattern can get complex. Therefore
framework support is desirable and some technological solutions have emerged.
The goal of this paper is to investigate the capabilities offered by existing
frameworks with a focus on orchestrated Sagas and the context of characteristics
and challenges of Microservices Architectures. This is summarized in the following
research question:

RQ: How well do recent technological solutions support implementing the
Saga pattern concerning the design, the execution and the visualization of
communication between microservices?

In Sect. 2, our approach to answer the research question is described. In
Sect. 3, the details of the Saga pattern are depicted based on literature and the
already introduced example scenario. This is used as a foundation for the following
evaluation in Sect. 4, our main contribution. Finally, we draw a conclusion in
Sect. 5.

An Evaluation of Saga Pattern Implementation Technologies 75

2 Methodology

First, we carried out a literature review to understand the Saga pattern itself and
its applicability to the Microservices Architecture. As sources, we considered the
original paper for the Saga pattern [6], as well as more recent books [3, 10, 11]
and papers [8, 15] which add the context of microservices. The result is the
description of the Saga pattern in Sect. 3 based on the trip booking example.

We then used this example to implement the Saga pattern with available
technological solutions. Solutions that have emerged so far are Axon2, Eventuate
Tram3, Netflix Conductor4, and more recently Long Running Actions for Micro-
Profile5. However, because this work has been done as a part of the bachelor
thesis of the first author, we had to limit the scope and therefore only selected
two solutions. The first solution we selected for our evaluation is Eventuate Tram,
because it is specifically designed for the Saga pattern and described in detail in
[11]. And the second solution is Netflix Conductor, because Netflix as a company
is well-known for its successful microservices approach [2]. Furthermore, Netflix
Conductor was not considered in another similar study [15] which compared
technological solutions for the Saga pattern. The study by Štefanko et al. [15]
includes a small set of criteria for comparing the different solutions which are
not explained in detail in the paper and additionally discusses problems of the
solutions in a qualitative way. Furthermore, Štefanko et al. [15] conducted a
performance test to measure processing times and throughput. In contrast, we
derived a more comprehensive criteria catalog from general Saga execution char-
acteristics as well as from considering Microservices Architecture characteristics
and challenges to evaluate the solutions. Our evaluation is qualitative, because
we assess the solutions according to the criteria catalog based on our imple-
mentations. We have not performed quantitative evaluations, like performance
benchmarks to assess scalability and throughput or user experiments to assess
the ease of use. With respect to the work of Štefanko et al. [15], our work extends
it by evaluating additional criteria and considering an additional solution. The
resulting evaluation of Eventuate Tram and Netflix Conductor based on these
criteria is presented in Sect. 4.

3 The Saga Pattern

The Saga pattern was introduced by Garcia-Molina and Salem [6] for long lived
transactions by designing them as a sequence of local transactions. Although
they focused on a centralized system, they also mentioned the possibility of a
distributed implementation [6]. Therefore, Sagas have been proposed for updating
2 https://docs.axoniq.io/reference-guide/axon-framework/sagas, last accessed

2021-02-17
3 https://eventuate.io/, last accessed 2021-02-17
4 https://netflix.github.io/conductor/, last accessed 2021-02-17
5 https://microprofile.io/project/eclipse/microprofile-lra, last accessed 2021-

02-17

76 Karolin Dürr et al.

data in multiple services in a Microservices Architecture without using distributed
transactions [11].

To clarify this, Fig. 1 shows an exemplary execution of the trip booking
example. The system offers the possibility to book a trip which includes booking
a hotel and a flight. This can be considered as a long lived transaction with three
microservices involved: a Travel Service which accepts requests for booking a
trip and initiates the execution, a Hotel Service which manages hotel bookings,
and a Flight Service which manages flight bookings. Using the 2PC protocol
would mean that booking the hotel and the flight would be done within one
ACID [14] transaction coordinated by the Travel Service where the whole trip is
either booked or rejected. During the transaction execution, all services must lock
resources impacting throughput [9, 12]. If one service is temporarily unavailable,
the transaction may fail reducing the availability of the system as a whole [7, 11].

S
a

g
a

 E
x

e
c

u
ti

o
n

C
o

o
rd

in
a

to
r

Start Saga

Travel Service

Start Booking Hotel

End Booking Hotel

Start Booking Flight

Abort Saga

End Saga

Saga Log

Start Canceling Flight

End Canceling Flight

Start Canceling Hotel

End Canceling Hotel

Hotel Service

Microservice

request/ message

writing to logs

Begin Saga

Start Booking Hotel

Flight Service

End Booking Hotels

Start Booking Flights

Abort Sagas

Start Canceling Flights

End Canceling Flights

Start Canceling Hotels

End Canceling Hotels

Fig. 1. Execution of a Saga’s failure scenario based on 6.

Implementing the example as a Saga means that the long lived transaction is
split into three local transactions: Save Trip Information, Booking Hotel, and
Booking Flight. The Save Trip Information transaction is executed upon a trip
booking request locally by the Travel Service to initiate the Saga and ensure
Durability. It is part of the Begin Saga step and does not require communication
with another service which is why it is not explicitly shown in Fig. 1. The Booking
Hotel transaction and the Booking Flight transaction are executed locally in the
Hotel Service and Flight Service, respectively. Each local transaction updates
only the data within one service and then triggers the next one [8, 11] until
all transactions are completed, and hence the Saga itself completes. If one
transaction fails, the Saga aborts and all previously completed transactions have
to be compensated. This case is shown in Fig. 1, where after the booking of a
flight fails, the previously done hotel booking has to be canceled. Consequently,

6 https://speakerdeck.com/caitiem20/applying-the-saga-pattern?slide=70,
slide 70, last accessed: 2021-02-17

An Evaluation of Saga Pattern Implementation Technologies 77

for each local transaction, a compensating transaction also needs to be provided,
which can compensate the transaction completely or at least semantically [6, 10].

In contrast to the 2PC protocol, a service therefore only holds locks for local
transactions and not for the whole Saga execution enabling it to effectively serve
more requests. One consequence is that the Isolation property is not satisfied
because intermediate results are visible to other Sagas before the executing one
is fully committed [15]. Therefore, countermeasures need to be taken to prevent
anomalies resulting from the lack of Isolation [11]. Also, Atomicity is not given
for the Saga as a whole, solely for each local transaction [6, 10]. Instead of strict
Consistency, only eventual consistency [13] is provided [10, 15]. During execution,
a trip with a hotel, but no flight would be inconsistent, but after completion
consistency is again achieved, when necessary through compensations. Durability
is fully guaranteed through the durability of local transactions and the Saga log,
which is a distributed log to persist every executed transaction. The Saga log
is managed by a component called the Saga Execution Coordinator which is
itself stateless and uses the log to trigger transactions and thereby proceed Saga
executions [6]. Having a Saga Execution Coordinator either as a separate service
or within a service exemplifies the orchestrated Saga approach with the Saga
Execution Coordinator being called the orchestrator [3, 10]. Although out of the
scope of this work, also a choreographed approach would be possible where the
coordination is distributed [10].

4 Technological Evaluation

Before we discuss the evaluation based on a set of criteria, some fundamental
differences need to be mentioned, because they also affect our evaluation re-
sults. Eventuate Tram specifically focuses on Sagas by offering a Java-based
Domain Specific Language (DSL) for specifying a sequence of transactions and
corresponding compensating transactions inside the service acting as the Saga
orchestrator. It is then executed together with the so-called CDC service and
infrastructure components such as a database for persisting the Saga log and a
message broker for communication. The DSL can also be used for the participants,
if implemented with Java. For other languages, participants have to be integrated
based on the used communication mechanisms. We implemented all services as
Spring7 services with the DSL included. In contrast, Conductor is not designed
explicitly for Sagas, but distributed workflows in general. The central component
is the Conductor server which accepts workflows in the form of a JSON-based
DSL. A Saga is registered as a workflow, with tasks representing transactions
for which different types are offered. We used so-called worker tasks which are
more customizable than others. They need to be registered, and the services,
again implemented in Java, can then poll and update these tasks to proceed with
the workflow. All implementations with examples and detailed information on
execution can be found online8.
7 https://spring.io/, last accessed 2021-02-17
8 https://github.com/KarolinDuerr/BA-SagaPattern

78 Karolin Dürr et al.

Table 1. Evaluation overview

Criterion Eventuate Tram Netflix Conductor
General Saga Characteristics
Specifying compensating transactions (CT) ✓ ✓

Automated execution of CTs ✓ ✓

Compensation only where needed ✓ not directly supported

Parallel execution of transactions ✗ ✓

Choreographed Sagas ✓ ✗

Monitoring
Runtime state of Sagas via database UI visualization

Orchestrator metrics from CDC service from Conductor server

Tracing Zipkin integration not directly supported

Logging microservices logs Conductor server logs

Expandability
Relatively simple integration ✓ ✓

Terminating or pausing running Sagas not directly via UI

Versioning Sagas ✗ ✓

Built-in language support Java Java, Python

Any language for orchestrator ✗ ✓

Any language for participant ✓ ✓

Failure performance
Enforced execution timeouts ✗ ✓

Retry of failing participant without restart ✗ ✓

Independent compensating transactions ✓ ✗

Auto-continuation after orchestrator crash ✗ ✓

No. of services for orchestration 2 1

New Sagas while orchestrator unavailable ✓ only with buffering

High availability through replication through replication

An Evaluation of Saga Pattern Implementation Technologies 79

Our first set of criteria (see Table 1 for an overview of all results) covers
general characteristics. Both technologies allow for specifying compensating
transactions which are also automatically triggered. However, only Eventuate
allows for mapping compensating transactions to transactions so that only
needed compensating transactions are executed while Conductor allows for one
failure workflow per workflow. That means the failure workflow must contain
all compensating transactions and even compensating transactions which would
not have been necessary are executed in case of a Saga abort. This is because
Conductor is not specifically focused on Sagas. With Conductor, the central
component is the Conductor server which orchestrates the Saga execution, and
participants are connected to the Conductor server, which is why it does not
support a choreographed approach to Sagas. With Eventuate as a framework
however, the participants could also be connected directly with each other,
enabling also a choreographed approach. In contrast, transaction execution
in Eventuate is strictly sequentially, while Conductor also allows for parallel
execution of transactions.

The second set of criteria considers monitoring, a challenge in Microservices
Architectures [2, 4]. To get insights at runtime, Eventuate offers no pre-built
tool, but the database tracking all transactions and messages could be used as a
source for building a custom monitoring solution. Instead, Conductor offers a UI
which visualizes current workflows and provides useful functionalities for runtime
insights. A metrics endpoint exists for both technologies, which can be used to
collect metrics like the number of sent messages, average execution times, or the
number of failed Saga workflows. A possibility to use distributed tracing is only
given by Eventuate which offers a pre-built Zipkin9 integration. Additionally,
logs are written by both technologies which could help with troubleshooting.

Because Microservices Architecture-based systems change and evolve, the third
set of criteria covers expandability. We extended the example with an additional
service, which can also be found in the repository. For both technologies, the
integration was possible without significant problems. Nevertheless, Conductor
is suited better for updating or extending a running system because currently
executing Sagas can be managed via the UI and workflows can be versioned.
This means that Sagas of a new version can be started at the same time as there
are still Sagas of an old version executing. With Eventuate, handling updates at
runtime requires more effort. Regarding polyglot programming as a characteristic
of Microservices Architectures [9, 16], Eventuate is a bit more restricted because
the DSL is based on Java which means that the orchestrator also needs to be
written in Java. With Conductor, the Conductor server is mainly responsible for
the orchestration which means that the service starting a Saga can be written
in any language. In addition to a pre-built Java client for writing participants,
Conductor also offers a Python client.

As a final set of criteria, we consider the technologies’ handling of failures
which have to be expected in a distributed system. Both technologies tolerate
possible crashes of Saga participants by retrying communications. However, only
9 https://zipkin.io/, last accessed 2021-02-17

80 Karolin Dürr et al.

Conductor enforces an execution timeout to be set while Eventuate might, per
default, wait indefinitely for a service to restart. Depending on the use case and
volume of requests, this can become an issue. If there is no execution timeout for
Sagas, a service being unavailable for an extended period together with a high
volume of requests might lead to an overloaded system as a whole, because Saga
executions pile up and cannot make progress. An execution timeout can then
protect the system from consequential failures. Then again, there might be use
cases where Sagas should not be stopped at all because of a timeout. In such
a case, the enforced execution timeout of Conductor might be problematic. A
participant responding with a failure is unsubscribed from the message broker
with Eventuate, requiring a full restart of the participant so that it can re-register.
In contrast, Conductor retries even if a participant responded with a failure
that might only be temporary. Because compensating transactions are executed
only where needed with Eventuate, they can be executed independently from
participants where no compensation is necessary. Thus, also crashes of such
participants can be tolerated. Crashes of the Saga coordinator are tolerated by
both technologies and execution can continue afterwards because all necessary
information is persistently logged. However, merely Conductor automatically
continues while Eventuate needs a trigger after restart, such as a new Saga start.
With Eventuate, two services are required for orchestration: The CDC service
as orchestrator and a service in control of the Saga. Therefore, new Sagas can
still be started if only the orchestrator is unavailable. In case of Conductor, the
Conductor server is the exclusive orchestrator and additional logic would be
needed to buffer new requests in another service. Finally, both can be set up as a
highly available system by replicating the CDC service or the Conductor server,
respectively.

To summarize, both technologies enable robust Saga implementations. The
characteristics of the Saga pattern are represented more clearly with Eventuate
than with Conductor. However, Eventuate comes with limitations regarding the
flexibility in operation which is in turn better supported by Conductor.

5 Conclusion and Outlook

Given the Microservices Architecture as a popular software architecture approach,
patterns and technologies are needed to efficiently implement these systems and
tackle their accompanying challenges. Our evaluation of Saga pattern implemen-
tation technologies covers one of the aspects software engineers should consider
to make an informed decision on which technologies to use based on their specific
needs. As future work, we want to include additional technologies into our evalu-
ation, such as Axon and Long Running Actions for MicroProfile, but also the
possible usage of BPMN workflow engines as proposed in a recent talk by Bernd
Rücker10 and also by Niall Deehan at the ZEUS 2020 workshop. Furthermore,
extending the evaluation with quantitative methods is imaginable, for example
by doing a performance benchmark.
10 https://www.youtube.com/watch?v=7uvK4WInq6k, last accessed: 2021-02-17

An Evaluation of Saga Pattern Implementation Technologies 81

References
1. Al-Houmailya, Y.J., Samaras, G.: Two-Phase Commit. In: Encyclopedia of Database

Systems, pp. 3204–3209. Springer US (2009), https://dx.doi.org/10.1007/978-0-
387-39940-9_713

2. Alshuqayran, N., Ali, N., Evans, R.: A Systematic Mapping Study in Microservice
Architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). pp. 44–51. IEEE Computer Society (2016),
https://dx.doi.org/10.1109/SOCA.2016.15

3. Bruce, M., Pereira, P.A.: Microservices in Action. Manning Publications, 1st edn.
(2018), ISBN: 9781617294457

4. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual Understanding of Microservice
Architecture: Current and Future Directions. ACM SIGAPP Applied Computing
Review 17(4), 29–45 (2018), https://dx.doi.org/10.1145/3183628.3183631

5. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: Yesterday, Today, and Tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer International Publishing (2017),
https://dx.doi.org/10.1007/978-3-319-67425-4_12

6. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the 1987 Association
for Computing Machinery Special Interest Group on Management of Data (ACM
SIGMOD) International Conference on Management of Data. vol. 16, pp. 249–259.
ACM Press (1987), https://dx.doi.org/10.1145/38714.38742

7. Helland, P.: Life Beyond Distributed Transactions: An Apostate’s Opinion. ACM
Queue 14(5), 69–98 (2016), https://dx.doi.org/10.1145/3012426.3025012

8. Limón, X., Guerra-Hernández, A., Sánchez-García, A.J., Arriaga, J.C.P.: SagaMAS: A
Software Framework for Distributed Transactions in the Microservice Architecture.
In: 2018 6th International Conference in Software Engineering Research and
Innovation (CONISOFT). pp. 50–58. IEEE Computer Society (2018), https:
//dx.doi.org/10.1109/CONISOFT.2018.8645853

9. Newman, S.: Building Microservices - Designing Fine-Grained Systems. O’Reilly
Media, Inc., 1st edn. (2015), ISBN: 9781491950357

10. Newman, S.: Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith. O’Reilly Media, Inc., 1st edn. (2019), ISBN: 9781492047841

11. Richardson, C.: Microservices Patterns. Manning Publications, 1 edn. (2019), ISBN:
9781617294549

12. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: Fast
Distributed Transactions for Partitioned Database Systems. In: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. pp. 1–12. Association
for Computing Machinery (2012), https://dx.doi.org/10.1145/2213836.2213838

13. Vogels, W.: Eventually Consistent. Communications of the ACM 52(1), 40–44 (2009),
https://dx.doi.org/10.1145/1435417.1435432

14. Vossen, G.: ACID Properties. In: Encyclopedia of Database Systems, pp. 19–21.
Springer US (2009), https://dx.doi.org/10.1007/978-0-387-39940-9_831

15. Štefanko, M., Chaloupka, O., Rossi, B.: The Saga Pattern in a Reactive Microservices
Environment. In: Proceedings of the 14th International Conference on Software
Technologies (ICSOFT) 2019. pp. 483–490. SciTePress (2019), https://dx.doi.org/
10.5220/0007918704830490

16. Zimmermann, O.: Microservices Tenets. Computer Science - Research and Development
32(3-4), 301–310 (2016), https://dx.doi.org/10.1007/s00450-016-0337-0

82 Karolin Dürr et al.

Systematic Literature Tools: Are we there yet?

Dominik Voigt1,2, Oliver Kopp1, and Karoline Wild2

1 JabRef e. V.
Sindelfingen, Germany

[firstname]@jabref.org
2 University of Stuttgart

Institute of Architecture of Application Systems
Stuttgart, Germany

karoline.wild@iaas.uni-stuttgart.de

Abstract. The number of publications is steadily growing. systematic
literature reviews (SLRs) are one answer to this issue. A variety of tools
exists designed to support the review process. This paper summarizes
requirements for adequate tooling support and shows that existing tools
do not meet all of them. We further investigate whether reference man-
agement tools can be used in conjunction with existing SLR tools to
address the current gaps in supporting SLRs. For that we evaluate three
reference management tools, JabRef, Bibsonomy, and Zotero, against
currently unadressed requirements and outline the next steps.

Keywords: methods, systematic literature review, tool support

1 Introduction

With the ever-growing number of publications in computer science [15], and other
fields of research, the conduction of meta studies becomes necessary to keep
up [17, 20]. Kitchenham [10] introduced the systematic literature review (SLR)
method to address this issue. The main idea is to systematically search and
evaluate all existing publications regarding a specific topic.

Computer science researchers that conduct SLRs face three main challenges [18]:
(i) For SLR novices, the learning of the SLR process and the definition of the
research protocol is challenging. (ii) All SLR practitioners face difficulties as-
sessing the quality of primary studies, a critical step within the conduction
of an SLR, especially for qualitative studies. (iii) The access and acquisition
of relevant studies across multiple e-libraries is a challenge. As a consequence,
the need for appropriate tool support to address these challenges has been
growing [1, 4, 8, 11, 18].

Currently, appropriate tool support is not yet achieved. To illustrate this, this
paper (i) summarizes the requirements for adequate SLR tools, (ii) discusses the
shortcomings of existing tools, and (iii) evaluates the capabilities of three reference
management tools to investigate whether they can address these shortcomings.
First, the overall SLR process and tool requirements are described in Sect. 2.

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org/Vol-2XXX
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2XXX

Plan Review Conduct Review

Document Review

Develop Review
Protocol

Search Studies
Select relevant

Studies

Write the
SLR Report

Synthesise
the Results

Extract relevant
Data

Fig. 1: Simplified SLR Process

Afterwards, we discuss in Sect. 3 that existing SLR tools do not fully meet these
requirements yet. We claim that existing reference management tools can be
extended and used in conjunction with existing SLR tools to overcome their
current lack of support. Therefore, we evaluate three tools in Sect. 4. Finally,
we conclude and outline the next steps required to close the remaining gaps in
supporting SLRs in Sect. 5.

2 SLR Process and SLR Tool Requirements

The SLR process consists of three phases each with a set of steps [10]. These
phases include the planning of the review, the conduction of the review, and the
reporting of results. In Fig. 1 a simplified SLR process is depicted.

During the planning of the review, the review protocol is created, which
especially describes the execution of the review. After the review is planned,
it is executed during the conduction according to the defined review protocol:
First the set of candidate papers is aggregated by executing the search strategy
(search step). Then, the candidate filters are checked for inclusion using the
selection criteria and quality instruments (selection step). Subsequently, the data
is extracted (extraction step) and the results are synthesised (synthesis step).
Finally, the results are reported in a format that makes them actionable and
describes their significance.

The main challenge researchers face during the conduction of the SLR is
during the search step. Commonly used e-libraries in the domain of computer
science research, such as IEEE, arXiv, and ACM, do not support easy mass
access, which is key to the SLR method as all relevant studies have to be found [1].
Furthermore, different e-libraries use different interfaces regarding their search
syntax and capabilities [1]. Thus e-library specific search strings have to be crafted
and papers have to be retrieved individually. This introduces a lot of unnecessary
manual effort for the researcher [1, 4].

84 Dominik Voigt et al.

Thus, adequate tool support is required. To focus the development of tools,
Al-Zubidy and Carver [1] identified 35 tool requirements based on interviews.
The need for support during the search step becomes evident in the top 8
requirements (R1–R8, ranked by the number of survey respondents that mentioned
the requirement): search multiple databases with a standardized query (R1, 48
times), removing duplicate studies (R2, 13 times), provide filtering for studies (R3,
7 times), merging new results into the existing database (R4, 6 times), synonym
recommendation for search strings (R5, 6 times), a repository for studies (R6,
6 times), standardized export formats (R7, 6 times), automatic download of
full-text papers (R8, 6 times). These requirements should be fulfilled by SLR
tools to adequate support researchers during their review.

3 Available SLR Tools in Computer Science

Several SLR tools specific to computer science are available to support the overall
SLR process [2, 3, 5, 6, 9, 16]. The tools have been evaluated and compared in
several studies, most recently by Marshall et al. [14] and Al-Zubidy and Carver
[1]. Both of these studies concluded that, while (i) the overall process support
was at least partially sufficient, (ii) the support for the search and management
of literature on the other hand was only partially supported at best. This is a
significant downside as integrated search and study management are the most
requested feature for SLR tools (R1–R8) [1, 7, 11, 17, 18].

Since the review of Al-Zubidy and Carver [1] we identified two new tools by
using the SLR Toolbox [13]: CloudSERA [19] and Thot [12]. Both do not provide
any significant improvement concerning these aspects.

Thus existing SLR tools have lacking support for the search and selection
steps of the SLR process. To address this gap, we propose the use of reference
management tools during the search and selection step, resulting in a conjunctive
use with existing SLR tools to provide support for every step of the SLR process.

4 Evaluation of Reference Management Tools

There exists a variety of reference management tools that can potentially be used
in conjunction with existing SLR tools. However, to allow adaptation to the needs
of SLRs, we considered only open source reference management tools as candidates.
Therefore, we extracted all open source reference management tools from this
list [21]. Thus, we evaluate the JabRef3, Bibsonomy4, and Zotero5 reference
management tools. We evaluate them against the requirements enumerated in
Sect. 2 (R1–R8). A summary of this evaluation is displayed in Table 1.

Zotero does not offer any way to search e-libraries. JabRef supports integrated
search but requires separate search strings for different libraries (R1). The reason
3 https://www.jabref.org/
4 https://www.bibsonomy.org/
5 https://www.zotero.org/

Systematic Literature Tools: Are we there yet? 85

Table 1: Evaluation of candidate reference management tools

R1 R2 R3 R4 R5 R6 R7 R8
Bibsonomy ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

JabRef ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Zotero ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

for this is the different search syntax and capabilities offered by the commonly
used e-libraries. Bibsonomy provides search over their own publication repository,
but not over external e-libraries.

As reference managers, JabRef, Bibsonomy, and Zotero, can manage reposito-
ries of references, including removing duplicate studies, and merging new entries
into their database (R2, R4, R6). Only JabRef and Zotero support filtering
studies based on their metadata, Bibsonomy solely provides filtering based on
the user defined tags (R3). Furthermore, only JabRef and Zotero allow the
acquisition of full-text pdfs to their corresponding reference (R8). Neither JabRef,
nor Bibsonomy, nor Zotero support the recommendation of synonyms for search
strings (R5). All reference managers support the export of entries into commonly
used formats, such as BibTeX, Endnote, and RIS (R7).

The reference management features and integrated search make JabRef the
most promising candidate tool that can fill the support gap for the search and
selection steps. Moreover, the standardized export formats it provides make the
integration into any SLR tool chain quite simple. If JabRef can address the
issue of requiring separate queries for the different e-libraries and the provision
of synonyms for search string construction it could address all of its current
shortcomings and fulfill all of the top 8 requirements.

5 Conclusion and Outlook

In this paper, we outlined the SLR tool landscape, requirements on them, and
their current drawbacks. Open source reference management tools can fulfill some
key requirements missing from existing SLR tools during the search and selection
step of an SLR. Thereby, JabRef has the significant advantage over Zotero
and Bibsonomy that it offers integrated search, which is also programmatically
available. With the integrated search being the most demanded feature and JabRef
has partial support for it, we plan to extend JabRef to address the problem of
e-library specific query strings (R1). With this extension, the conjunctive use
of JabRef with existing SLR tools will close the gap in support for the search
and selection steps. This will enable computer science researchers crafting a solid
basis of their related work search. Reducing the effort required for conducting
SLRs and improving the overall quality of scientific research.

Acknowledgments This work was partially funded by the BMWi project
PlanQK (01MK20005N).

86 Dominik Voigt et al.

References
1. Al-Zubidy, A., Carver, J.C.: Identification and prioritization of SLR search tool

requirements: an SLR and a survey. Empirical Software Engineering 24(1), 139–169
(2018)

2. Barn, B.S., Raimondi, F., Athappian, L., Clark, T.: SLR-Tool: A tool to support
collaborative systematic literature reviews. In: Proceedings of the 16th International
Conference on Enterprise Information Systems (ICEIS). SCITEPRESS (2014)

3. Bowes, D., Hall, T., Beecham, S.: SLuRp. In: Proceedings of the 2nd international
workshop on Evidential assessment of software technologies (EAST). ACM Press
(2012)

4. Carver, J.C., Hassler, E., Hernandes, E., Kraft, N.A.: Identifying barriers to the
systematic literature review process. In: International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE (2013)

5. Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Thommazo, A.D., Belgamo, A.:
Improvements in the StArt tool to better support the systematic review process. In:
Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering (EASE). ACM Press (2016)

6. Fernandez-Saez, A.M., Bocco, M.G., Romero, F.P.: SLR-TOOL – a tool for performing
systematic literature reviews. In: 5th International Conference on Software and Data
Technologies. SCITEPRESS (2010)

7. Hassler, E., Carver, J.C., Hale, D., Al-Zubidy, A.: Identification of SLR tool needs –
results of a community workshop. Information and Software Technology 70, 122–129
(2016)

8. Hassler, E., Carver, J.C., Kraft, N.A., Hale, D.: Outcomes of a community workshop to
identify and rank barriers to the systematic literature review process. In: Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM Press (2014)

9. Hernandes, E., Zamboni, A., Fabbri, S., Thommazo, A.D.: Using GQM and TAM to
evaluate StArt – a tool that supports systematic review. CLEI Electronic Journal
15(1) (2012)

10. Kitchenham, B.A.: Guidelines for performing systematic literature reviews in software
engineering. Tech. rep., Keele University (2007)

11. Kitchenham, B.A., Brereton, P.: A systematic review of systematic review process
research in software engineering. Information and Software Technology 55(12),
2049–2075 (dec 2013)

12. Marchezan, L., Bolfe, G., Rodrigues, E., Bernardino, M., Basso, F.P.: Thoth: A web-
based tool to support systematic reviews. In: ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE (2019)

13. Marshall, C., Brereton, P.: Systematic review toolbox. In: Proceedings of the 19th

International Conference on Evaluation and Assessment in Software Engineering
(EASE). ACM Press (2015)

14. Marshall, C., Brereton, P., Kitchenham, B.A.: Tools to support systematic reviews in
software engineering a feature analysis. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (EASE). ACM
Press (2014)

15. Microsoft: Overview of the number of computer science publications (2021), https:
//academic.microsoft.com/topic/41008148

16. Molléri, J.S., Benitti, F.B.V.: SESRA. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering (EASE). ACM
Press (2015)

Systematic Literature Tools: Are we there yet? 87

17. Ramampiaro, H., Cruzes, D., Conradi, R., Mendona, M.: Supporting evidence-based
software engineering with collaborative information retrieval. In: Proceedings of the
6th International Conference on Collaborative Computing (ICST). IEEE (2010)

18. Riaz, M., Sulayman, M., Salleh, N., Mendes, E.: Experiences conducting systematic
reviews from novices’ perspective. In: Proceedings of the 14th international conference
on Evaluation and Assessment in Software Engineering (EASE). BCS Learning &
Development (2010)

19. Ruiz-Rube, I., Person, T., Mota, J.M., Dodero, J.M., González-Toro, Á.R.: Evidence-
based systematic literature reviews in the cloud. In: Proceedings of the 21st

International Conference on Intelligent Data Engineering and Automated Learning
(IDEAL). Springer International Publishing (2018)

20. Snyder, H.: Literature review as a research methodology: An overview and guidelines.
Journal of Business Research (JBR) 104, 333–339 (2019)

21. Universitätsbibliothek Technische Universität München: Softwarevergleich Liter-
aturverwaltung - 8. Aktualisierung (Juni 2020) (2021), https://mediatum.ub.tum.
de/doc/1316333/1316333.pdf

All links were last followed on January 25, 2021.

88 Dominik Voigt et al.

Index

Amme, Wolfram, 25
Arnold, Lisa, 14, 29

Brandt, Lennart, 43
Breitmayer, Marius, 14, 29
Böhm, Sebastian, 65

Cremerius, Jonas, 19

Dürr, Karolin, 74

Haarmann, Stephan, 1
Heinze, Thomas S., 25

Kopp, Oliver, 83
Koschmider, Agnes, 43

Lichtenthäler, Robin, 74

Lübke, Daniel, 47

Reichert, Manfred, 14, 29
Rossi, Fabiana, 56

Schäfer, André, 25
Schubanz, Mathias, 34
Siegert, Simon, 9

Völker, Maximilian, 9
Voigt, Dominik, 83

Wild, Karoline, 83
Wirtz, Guido, 65, 74
Wutke, Daniel, 47

Ziolkowski, Tobias, 43

	Fragment-Based Case Management Models: Metamodel, Consistency, & Correctness
	Towards Decision Management for Robotic Process Automation
	Towards Real-Time Progress Determination of Object-Aware Business Processes
	Towards a Framework for Data Enhanced Process Models in Process Mining
	Detecting Semantic Business Process Model Clones
	A Dashboard-based Approach for Monitoring Object-Aware Processes
	Custom-MADE – Leveraging Agile Rationale Management by Employing Domain-Specific Languages
	ElogQP: An Event log Quality Pointer
	Analysis of Prevalent BPMN Layout Choices on GitHub
	A Deep Q-learning Scaling Policy for Elastic Application Deployment
	Profiling Lightweight Container Platforms: MicroK8s and K3s in Comparison to Kubernetes
	An Evaluation of Saga Pattern Implementation Technologies
	Systematic Literature Tools: Are we there yet?

